Unlocking Mechanisms for Soil Organic Matter Accumulation: Carbon Use Efficiency and Microbial Necromass as the Keys

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Yang Yang, Anna Gunina, Huan Cheng, Liangxu Liu, Baorong Wang, Yanxing Dou, Yunqiang Wang, Chao Liang, Shaoshan An, Scott X. Chang
{"title":"Unlocking Mechanisms for Soil Organic Matter Accumulation: Carbon Use Efficiency and Microbial Necromass as the Keys","authors":"Yang Yang, Anna Gunina, Huan Cheng, Liangxu Liu, Baorong Wang, Yanxing Dou, Yunqiang Wang, Chao Liang, Shaoshan An, Scott X. Chang","doi":"10.1111/gcb.70033","DOIUrl":null,"url":null,"abstract":"Soil microorganisms transform plant‐derived C (carbon) into particulate organic C (POC) and mineral‐associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large‐scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by <jats:sup>18</jats:sup>O‐H<jats:sub>2</jats:sub>O approach). Soil sampling (0–10 and 10–20 cm depth) was conducted along a climatic transect of 900 km on the Loess Plateau, including cropland, grassland, shrubland, and forest ecosystems, to ensure the homogeneous soil parent material. We found the highest POC and MAOC accumulation occurred in zones of MAT between 5°C and 10°C or MAP between 300 and 500 mm. Microbial necromass C was more positively related to POC than MAOC (<jats:italic>p</jats:italic> &lt; 0.05), suggesting that microbial residues may improve POC pool more strongly compared to MAOC pool. Random forest and linear regression analyses showed that POC increased with fungal necromass C, whereas bacterial necromass C drove MAOC. Microbial CUE was coupled with MAOC (<jats:italic>p</jats:italic> &lt; 0.05) but decoupled with POC and SOC (<jats:italic>p</jats:italic> &gt; 0.05). The POC have faster turnover rate due to the lack of clay protection, which may lead to the rapid turnover of microbial necromass and thus their decoupling from the CUE. In this sense, the SOC accumulation is driven by microbial necromass, whereas CUE explains MAOC dynamics. Our findings highlight the insufficiency of relying solely on microbial carbon use efficiency (CUE) to predict bulk SOC storage. Instead, we propose that CUE and microbial necromass should be used together to explain SOC dynamics, each influencing distinct C pools.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"1 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/gcb.70033","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Soil microorganisms transform plant‐derived C (carbon) into particulate organic C (POC) and mineral‐associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large‐scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by 18O‐H2O approach). Soil sampling (0–10 and 10–20 cm depth) was conducted along a climatic transect of 900 km on the Loess Plateau, including cropland, grassland, shrubland, and forest ecosystems, to ensure the homogeneous soil parent material. We found the highest POC and MAOC accumulation occurred in zones of MAT between 5°C and 10°C or MAP between 300 and 500 mm. Microbial necromass C was more positively related to POC than MAOC (p < 0.05), suggesting that microbial residues may improve POC pool more strongly compared to MAOC pool. Random forest and linear regression analyses showed that POC increased with fungal necromass C, whereas bacterial necromass C drove MAOC. Microbial CUE was coupled with MAOC (p < 0.05) but decoupled with POC and SOC (p > 0.05). The POC have faster turnover rate due to the lack of clay protection, which may lead to the rapid turnover of microbial necromass and thus their decoupling from the CUE. In this sense, the SOC accumulation is driven by microbial necromass, whereas CUE explains MAOC dynamics. Our findings highlight the insufficiency of relying solely on microbial carbon use efficiency (CUE) to predict bulk SOC storage. Instead, we propose that CUE and microbial necromass should be used together to explain SOC dynamics, each influencing distinct C pools.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信