Online monitoring of water quality in industrial wastewater treatment process based on near-infrared spectroscopy

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Cheng Peng, Zeming Wu, Shudi Zhang, Boran Lin, Lei Nie, Weilu Tian, Hengchang Zang
{"title":"Online monitoring of water quality in industrial wastewater treatment process based on near-infrared spectroscopy","authors":"Cheng Peng, Zeming Wu, Shudi Zhang, Boran Lin, Lei Nie, Weilu Tian, Hengchang Zang","doi":"10.1016/j.watres.2025.123165","DOIUrl":null,"url":null,"abstract":"Water quality monitoring is one of the critical aspects of industrial wastewater treatment, which is important for checking the treatment effect, optimizing the treatment technology and ensuring that the water quality meets the standard. Chemical oxygen demand (COD) is a key indicator for monitoring water quality, which reflects the degree of organic matter pollution in water bodies. However, the current methods for determining COD values have drawbacks such as slow speed and complicated operation, which hardly meet the demand of online monitoring. This article firstly proposed a novel quantitative analysis method based on NIR spectroscopy and multi-preprocessing stacking, successfully enabling real-time online monitoring of COD values during industrial wastewater treatment. First, the existing swarm intelligence algorithm was enhanced to optimize the hyperparameters of various base models. Next, multiple spectral preprocessing techniques were innovatively combined with a stacking strategy to construct multi-preprocessing stacking models, enabling comprehensive extraction of effective spectral information. Finally, various combinations of base models were evaluated, leading to the selection of the multi-preprocessing stacking model with optimal performance. The results indicate that the model achieves excellent predictive performance and strong generalization ability. For equalization tank samples, the R<sup>2</sup> and RMSE values were 0.8640 and 326.6845 mg/L, respectively. For secondary settling tank samples, the R<sup>2</sup> and RMSE values were 0.8798 and 15.1917 mg/L, respectively. Compared to traditional single and stacking models, the RMSE was reduced by at least 12.75% and 5.11%, respectively. In addition, the method has a relatively low modeling cost and offers interpretability. This study presents an efficient and straightforward solution for the online monitoring of COD values in industrial wastewater treatment, laying a solid technical foundation for the efficient management of industrial wastewater and the protection of water resources and the ecological environment.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"16 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123165","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Water quality monitoring is one of the critical aspects of industrial wastewater treatment, which is important for checking the treatment effect, optimizing the treatment technology and ensuring that the water quality meets the standard. Chemical oxygen demand (COD) is a key indicator for monitoring water quality, which reflects the degree of organic matter pollution in water bodies. However, the current methods for determining COD values have drawbacks such as slow speed and complicated operation, which hardly meet the demand of online monitoring. This article firstly proposed a novel quantitative analysis method based on NIR spectroscopy and multi-preprocessing stacking, successfully enabling real-time online monitoring of COD values during industrial wastewater treatment. First, the existing swarm intelligence algorithm was enhanced to optimize the hyperparameters of various base models. Next, multiple spectral preprocessing techniques were innovatively combined with a stacking strategy to construct multi-preprocessing stacking models, enabling comprehensive extraction of effective spectral information. Finally, various combinations of base models were evaluated, leading to the selection of the multi-preprocessing stacking model with optimal performance. The results indicate that the model achieves excellent predictive performance and strong generalization ability. For equalization tank samples, the R2 and RMSE values were 0.8640 and 326.6845 mg/L, respectively. For secondary settling tank samples, the R2 and RMSE values were 0.8798 and 15.1917 mg/L, respectively. Compared to traditional single and stacking models, the RMSE was reduced by at least 12.75% and 5.11%, respectively. In addition, the method has a relatively low modeling cost and offers interpretability. This study presents an efficient and straightforward solution for the online monitoring of COD values in industrial wastewater treatment, laying a solid technical foundation for the efficient management of industrial wastewater and the protection of water resources and the ecological environment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信