{"title":"Predictability of tropical cyclone track density in S2S reforecast","authors":"Chi Lok Loi, Kai-Chih Tseng, Chun-Chieh Wu","doi":"10.1038/s41612-025-00909-0","DOIUrl":null,"url":null,"abstract":"<p>In this study, we examine the predictability of tropical cyclone (TC) track density in the subseasonal-to-seasonal (S2S) reforecast ensembles of the European Centre for Medium-range Weather Forecasts (ECMWF) using the method of average predictability time (APT). Eleven of the retrieved APT modes (APTMs) of TC track density possess an APT longer than 1 week. The most predictable of them, APTM-1, has an APT of almost three weeks and is found to be closely linked to the Boreal Summer Intraseasonal Oscillation (BSISO) and monsoon variability. Another discovery is the strong relationship between APTM-7 and the activity of mixed Rossby-gravity (MRG) waves and tropical depression (TD) type disturbances despite its short APT of ~12 days. We further carry out a simple case analysis to see how the relatively high predictability of APTM-1 manifests in the S2S model. Our work provides a new possibility for improving medium-range TC forecast skill, and has revealed how underlying tropical variability can play a role in determining TC predictability.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"44 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00909-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we examine the predictability of tropical cyclone (TC) track density in the subseasonal-to-seasonal (S2S) reforecast ensembles of the European Centre for Medium-range Weather Forecasts (ECMWF) using the method of average predictability time (APT). Eleven of the retrieved APT modes (APTMs) of TC track density possess an APT longer than 1 week. The most predictable of them, APTM-1, has an APT of almost three weeks and is found to be closely linked to the Boreal Summer Intraseasonal Oscillation (BSISO) and monsoon variability. Another discovery is the strong relationship between APTM-7 and the activity of mixed Rossby-gravity (MRG) waves and tropical depression (TD) type disturbances despite its short APT of ~12 days. We further carry out a simple case analysis to see how the relatively high predictability of APTM-1 manifests in the S2S model. Our work provides a new possibility for improving medium-range TC forecast skill, and has revealed how underlying tropical variability can play a role in determining TC predictability.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.