Katherine R. Coppess, Fredric Y. K. Lam, Eric M. Dunham
{"title":"Seismic Signatures of Fluctuating Fragmentation in Volcanic Eruptions","authors":"Katherine R. Coppess, Fredric Y. K. Lam, Eric M. Dunham","doi":"10.1029/2024jb029050","DOIUrl":null,"url":null,"abstract":"Fragmentation plays a critical role in eruption explosivity by influencing the eruptive jet and plume dynamics that may initiate hazards such as pyroclastic flows. The mechanics and progression of fragmentation during an eruption are challenging to constrain observationally, limiting our understanding of this important process. In this work, we explore seismic radiation associated with unsteady fragmentation. Seismic force and moment tensor fluctuations from unsteady fragmentation arise from fluctuations in fragmentation depth and wall shear stress (e.g., from viscosity variations). We use unsteady conduit flow models to simulate perturbations to a steady-state eruption from injections of heterogeneous magma (specifically, variable magma viscosity due to crystal volume fraction variations). Changes in wall shear stress and pressure determine the seismic force and moment histories, which are used to calculate synthetic seismograms. We consider three heterogeneity profiles: Gaussian pulse, sinusoidal, and stochastic. Fragmentation of a high-crystallinity Gaussian pulse produces a distinct very-long-period seismic signature and associated reduction in mass eruption rate, suggesting joint use of seismic, infrasound, and plume monitoring data to identify this process. Simulations of sinusoidal injections quantify the relation between the frequency or length scale of heterogeneities passing through fragmentation and spectral peaks in seismograms, with velocity seismogram amplitudes increasing with frequency. Stochastic composition variations produce stochastic seismic signals similar to observed eruption tremor, though computational limitations restrict our study to frequencies less than 0.25 Hz. We suggest that stochastic fragmentation fluctuations could be a plausible eruption tremor source.","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"99 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024jb029050","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fragmentation plays a critical role in eruption explosivity by influencing the eruptive jet and plume dynamics that may initiate hazards such as pyroclastic flows. The mechanics and progression of fragmentation during an eruption are challenging to constrain observationally, limiting our understanding of this important process. In this work, we explore seismic radiation associated with unsteady fragmentation. Seismic force and moment tensor fluctuations from unsteady fragmentation arise from fluctuations in fragmentation depth and wall shear stress (e.g., from viscosity variations). We use unsteady conduit flow models to simulate perturbations to a steady-state eruption from injections of heterogeneous magma (specifically, variable magma viscosity due to crystal volume fraction variations). Changes in wall shear stress and pressure determine the seismic force and moment histories, which are used to calculate synthetic seismograms. We consider three heterogeneity profiles: Gaussian pulse, sinusoidal, and stochastic. Fragmentation of a high-crystallinity Gaussian pulse produces a distinct very-long-period seismic signature and associated reduction in mass eruption rate, suggesting joint use of seismic, infrasound, and plume monitoring data to identify this process. Simulations of sinusoidal injections quantify the relation between the frequency or length scale of heterogeneities passing through fragmentation and spectral peaks in seismograms, with velocity seismogram amplitudes increasing with frequency. Stochastic composition variations produce stochastic seismic signals similar to observed eruption tremor, though computational limitations restrict our study to frequencies less than 0.25 Hz. We suggest that stochastic fragmentation fluctuations could be a plausible eruption tremor source.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.