Arlen Dean , Dun Jack Fu , Mohammad Zhalechian , Mark P. Van Oyen , Mariel S. Lavieri , Anthony P. Khawaja , Joshua D. Stein
{"title":"Validation of a Visual Field Prediction Tool for Glaucoma: A Multicenter Study Involving Patients With Glaucoma in the United Kingdom","authors":"Arlen Dean , Dun Jack Fu , Mohammad Zhalechian , Mark P. Van Oyen , Mariel S. Lavieri , Anthony P. Khawaja , Joshua D. Stein","doi":"10.1016/j.ajo.2025.01.006","DOIUrl":null,"url":null,"abstract":"<div><h3>PURPOSE</h3><div>A previously developed machine-learning approach with Kalman filtering technology accurately predicted the disease trajectory for patients with various glaucoma types and severities using clinical trial data. This study assesses performance of the KF approach with real-world data.</div></div><div><h3>DESIGN</h3><div>Retrospective cohort study.</div></div><div><h3>METHODS</h3><div>We tested the performance of a previously validated KF model (PKF) initially trained using data from the African Descent and Glaucoma Evaluation Study and the Diagnostic Innovations in Glaucoma Study in patients with different types and severities of glaucoma receiving care in the United Kingdom (UK), comparing the predictive accuracy to 2 conventional linear regression (LR) models and a newly developed KF trained on UK patients (UK-KF).</div></div><div><h3>RESULTS</h3><div>A total of 3116 patients with open-angle glaucoma or suspects were divided into training (n=1584) and testing (n=1532) sets. The predictive accuracy for MD within 2.5 dB of the observed value at 60 months’ follow-up for PKF (75.7%) was substantially better than those for the LR models (<em>P</em> < .01 for both) and similar to that for UK-KF (75.2%, <em>P</em> = .70). The proportion of MD predictions in the 95% repeatability intervals at 60 months’ follow-up for PKF (67.9%) was higher than those for the LR models (40.2%, 40.9%) and similar to that for UK-KF (71.4%).</div></div><div><h3>CONCLUSIONS</h3><div>This study validates the performance of our previously developed KF model on a real-world, multicenter patient population. Our model substantially outperforms the current clinical standard (LR) and forecasts well for patients with different glaucoma types and severities. This study supports the generalizability of PKF performance and supports prospective study of implementation into clinical practice.</div></div>","PeriodicalId":7568,"journal":{"name":"American Journal of Ophthalmology","volume":"272 ","pages":"Pages 87-97"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0002939425000212","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PURPOSE
A previously developed machine-learning approach with Kalman filtering technology accurately predicted the disease trajectory for patients with various glaucoma types and severities using clinical trial data. This study assesses performance of the KF approach with real-world data.
DESIGN
Retrospective cohort study.
METHODS
We tested the performance of a previously validated KF model (PKF) initially trained using data from the African Descent and Glaucoma Evaluation Study and the Diagnostic Innovations in Glaucoma Study in patients with different types and severities of glaucoma receiving care in the United Kingdom (UK), comparing the predictive accuracy to 2 conventional linear regression (LR) models and a newly developed KF trained on UK patients (UK-KF).
RESULTS
A total of 3116 patients with open-angle glaucoma or suspects were divided into training (n=1584) and testing (n=1532) sets. The predictive accuracy for MD within 2.5 dB of the observed value at 60 months’ follow-up for PKF (75.7%) was substantially better than those for the LR models (P < .01 for both) and similar to that for UK-KF (75.2%, P = .70). The proportion of MD predictions in the 95% repeatability intervals at 60 months’ follow-up for PKF (67.9%) was higher than those for the LR models (40.2%, 40.9%) and similar to that for UK-KF (71.4%).
CONCLUSIONS
This study validates the performance of our previously developed KF model on a real-world, multicenter patient population. Our model substantially outperforms the current clinical standard (LR) and forecasts well for patients with different glaucoma types and severities. This study supports the generalizability of PKF performance and supports prospective study of implementation into clinical practice.
期刊介绍:
The American Journal of Ophthalmology is a peer-reviewed, scientific publication that welcomes the submission of original, previously unpublished manuscripts directed to ophthalmologists and visual science specialists describing clinical investigations, clinical observations, and clinically relevant laboratory investigations. Published monthly since 1884, the full text of the American Journal of Ophthalmology and supplementary material are also presented online at www.AJO.com and on ScienceDirect.
The American Journal of Ophthalmology publishes Full-Length Articles, Perspectives, Editorials, Correspondences, Books Reports and Announcements. Brief Reports and Case Reports are no longer published. We recommend submitting Brief Reports and Case Reports to our companion publication, the American Journal of Ophthalmology Case Reports.
Manuscripts are accepted with the understanding that they have not been and will not be published elsewhere substantially in any format, and that there are no ethical problems with the content or data collection. Authors may be requested to produce the data upon which the manuscript is based and to answer expeditiously any questions about the manuscript or its authors.