Reversible phase transition and tunable band gap in zinc telluride induced by acoustic shock exposure

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Oviya Sekar, F. Irine Maria Bincy, Raju Suresh Kumar, Kannappan Perumal, Ikhyun Kim, S. A. Martin Britto Dhas
{"title":"Reversible phase transition and tunable band gap in zinc telluride induced by acoustic shock exposure","authors":"Oviya Sekar, F. Irine Maria Bincy, Raju Suresh Kumar, Kannappan Perumal, Ikhyun Kim, S. A. Martin Britto Dhas","doi":"10.1039/d4dt03393k","DOIUrl":null,"url":null,"abstract":"In this study, Zinc Telluride (ZnTe) was subjected to acoustic shock waves with a Mach number of 1.5, transient pressure of 0.59 MPa, and a temperature of 520 K to analyze its stability against shock wave impact. ZnTe was exposed to different shock pulses, such as 100, 200, 300, and 400. The stability was assessed through multiple characterization techniques such as Powder X-ray diffraction (PXRD), Raman spectroscopy, Ultraviolet diffuse reflectance spectroscopy (UV-DRS) analysis, Photoluminescence (PL) spectroscopy, and Scanning Electron Microscopy (SEM). The X-ray diffraction pattern revealed a phase transition at 300 shock pulses from cubic (<em>F</em><img alt=\"[4 with combining macron]\" border=\"0\" src=\"https://www.rsc.org/images/entities/char_0034_0304.gif\"/>3<em>m</em>) to cubic (<em>Fm</em><img alt=\"[3 with combining macron]\" border=\"0\" src=\"https://www.rsc.org/images/entities/char_0033_0304.gif\"/><em>m</em>). Interestingly, at 400 shock pulses, the original cubic (<em>F</em><img alt=\"[4 with combining macron]\" border=\"0\" src=\"https://www.rsc.org/images/entities/char_0034_0304.gif\"/>3<em>m</em>) phase was restored. The Raman spectrum showed the disappearance, intensity variation, and shift of Raman peaks, particularly at 300 shock pulses, which reverted to the original state at 400 pulses, indicating a reversible phase transition. The absorption spectrum exhibited a lower angle shift and a change in band gap from 2.85 eV to 2.63 eV at 300 shock pulses. However, the band gap was reduced to 2.8 eV at 400 shock pulses. The photoluminescence spectrum showed high intensity specifically at 300 shock-loaded conditions. Morphological analysis revealed a change from irregular shapes to plate-like structures at 300 shock pulses. The results confirm that shock waves significantly impact ZnTe, inducing a reversible phase transition.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"33 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt03393k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, Zinc Telluride (ZnTe) was subjected to acoustic shock waves with a Mach number of 1.5, transient pressure of 0.59 MPa, and a temperature of 520 K to analyze its stability against shock wave impact. ZnTe was exposed to different shock pulses, such as 100, 200, 300, and 400. The stability was assessed through multiple characterization techniques such as Powder X-ray diffraction (PXRD), Raman spectroscopy, Ultraviolet diffuse reflectance spectroscopy (UV-DRS) analysis, Photoluminescence (PL) spectroscopy, and Scanning Electron Microscopy (SEM). The X-ray diffraction pattern revealed a phase transition at 300 shock pulses from cubic (FAbstract Image3m) to cubic (FmAbstract Imagem). Interestingly, at 400 shock pulses, the original cubic (FAbstract Image3m) phase was restored. The Raman spectrum showed the disappearance, intensity variation, and shift of Raman peaks, particularly at 300 shock pulses, which reverted to the original state at 400 pulses, indicating a reversible phase transition. The absorption spectrum exhibited a lower angle shift and a change in band gap from 2.85 eV to 2.63 eV at 300 shock pulses. However, the band gap was reduced to 2.8 eV at 400 shock pulses. The photoluminescence spectrum showed high intensity specifically at 300 shock-loaded conditions. Morphological analysis revealed a change from irregular shapes to plate-like structures at 300 shock pulses. The results confirm that shock waves significantly impact ZnTe, inducing a reversible phase transition.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信