Engineering Covalent Aptamer Chimeras for Enhanced Autophagic Degradation of Membrane Proteins

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yang Shi, Yangfang Yun, Rong Wang, Zheng Liu, Zhenkun Wu, Yu Xiang, Jingjing Zhang
{"title":"Engineering Covalent Aptamer Chimeras for Enhanced Autophagic Degradation of Membrane Proteins","authors":"Yang Shi, Yangfang Yun, Rong Wang, Zheng Liu, Zhenkun Wu, Yu Xiang, Jingjing Zhang","doi":"10.1002/anie.202425123","DOIUrl":null,"url":null,"abstract":"Targeted degradation of membrane proteins represents an attractive strategy for eliminating pathogenesis-related proteins. Aptamer-based chimeras hold great promise as membrane protein degraders, however, their degradation efficacy is often hindered by the limited structural stability and the risk of off-target effects due to the non-covalent interaction with target proteins. We here report the first design of a covalent aptamer-based autophagosome-tethering chimera (CApTEC) for the enhanced autophagic degradation of cell-surface proteins, including transferrin receptor 1 (TfR1) and nucleolin (NCL). This strategy relies on the site-specific incorporation of sulfonyl fluoride groups onto aptamers to enable the cross-linking with target proteins, coupled with the conjugation of an LC3 ligand to hijack the autophagy-lysosomal pathway for targeted protein degradation. The chemically engineered CApTECs exhibit enhanced on-target retention and improved structural stability. Our results also demonstrate that CApTECs achieve remarkably enhanced and prolonged degradation of membrane proteins compared to the non-covalent designs. Furthermore, the CApTEC targeting TfR1 is combined with 5-fluorouracil (5-FU) for synergistic tumor therapy in a mouse model, leading to substantial suppression of tumor growth. Our strategy may provide deep insights into the LC3-mdiated autophagic degradation, affording a modular and effective strategy for membrane protein degradation and precise therapeutic applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"24 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202425123","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Targeted degradation of membrane proteins represents an attractive strategy for eliminating pathogenesis-related proteins. Aptamer-based chimeras hold great promise as membrane protein degraders, however, their degradation efficacy is often hindered by the limited structural stability and the risk of off-target effects due to the non-covalent interaction with target proteins. We here report the first design of a covalent aptamer-based autophagosome-tethering chimera (CApTEC) for the enhanced autophagic degradation of cell-surface proteins, including transferrin receptor 1 (TfR1) and nucleolin (NCL). This strategy relies on the site-specific incorporation of sulfonyl fluoride groups onto aptamers to enable the cross-linking with target proteins, coupled with the conjugation of an LC3 ligand to hijack the autophagy-lysosomal pathway for targeted protein degradation. The chemically engineered CApTECs exhibit enhanced on-target retention and improved structural stability. Our results also demonstrate that CApTECs achieve remarkably enhanced and prolonged degradation of membrane proteins compared to the non-covalent designs. Furthermore, the CApTEC targeting TfR1 is combined with 5-fluorouracil (5-FU) for synergistic tumor therapy in a mouse model, leading to substantial suppression of tumor growth. Our strategy may provide deep insights into the LC3-mdiated autophagic degradation, affording a modular and effective strategy for membrane protein degradation and precise therapeutic applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信