Ultrafast Water Purification by Template-Free Nanoconfined Catalysts Derived from Municipal Sludge

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chao-Hai Gu, Meng Du, Ru-Yi Han, Prof. Ai-Yong Zhang, Prof. Han-Qing Yu, Prof. Dr. Mingyang Xing
{"title":"Ultrafast Water Purification by Template-Free Nanoconfined Catalysts Derived from Municipal Sludge","authors":"Chao-Hai Gu,&nbsp;Meng Du,&nbsp;Ru-Yi Han,&nbsp;Prof. Ai-Yong Zhang,&nbsp;Prof. Han-Qing Yu,&nbsp;Prof. Dr. Mingyang Xing","doi":"10.1002/anie.202423629","DOIUrl":null,"url":null,"abstract":"<p>Nanoconfinement at the interface of heterogeneous Fenton-like catalysts offers promising avenues for advancing oxidation processes in water purification. Herein, we introduce a template-free strategy for synthesizing nanoconfined catalysts from municipal sludge (S-NCCs), specifically engineered to optimize reactive oxygen species (ROS) generation and utilization for rapid pollutant degradation. Using selective hydrofluoric acid corrosion, we create an architecture that confines atomically dispersed Fe centers within a micro-mesoporous carbon matrix in situ. This method maximizes the utilization of silicon and aluminum content from sludge, prevents metal agglomeration, and precisely regulates the chemical environment of Fe active sites. As a result, the S-NCCs promote a transition from nonradical to hybrid radical/nonradical reaction mechanisms, significantly enhancing ROS efficiency, stability, and pollutant degradation rates. These catalysts demonstrate exceptional pollutant removal performance, achieving a 261-fold increase in degradation efficiency for compounds such as phenol and sulfamethoxazole compared to unconfined analogs, outperforming most state-of-the-art Fenton-like systems. Our findings highlight the transformative potential of nanoconfined catalysis in environmental applications, providing an effective and scalable solution for sustainable water purification.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 14","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202423629","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoconfinement at the interface of heterogeneous Fenton-like catalysts offers promising avenues for advancing oxidation processes in water purification. Herein, we introduce a template-free strategy for synthesizing nanoconfined catalysts from municipal sludge (S-NCCs), specifically engineered to optimize reactive oxygen species (ROS) generation and utilization for rapid pollutant degradation. Using selective hydrofluoric acid corrosion, we create an architecture that confines atomically dispersed Fe centers within a micro-mesoporous carbon matrix in situ. This method maximizes the utilization of silicon and aluminum content from sludge, prevents metal agglomeration, and precisely regulates the chemical environment of Fe active sites. As a result, the S-NCCs promote a transition from nonradical to hybrid radical/nonradical reaction mechanisms, significantly enhancing ROS efficiency, stability, and pollutant degradation rates. These catalysts demonstrate exceptional pollutant removal performance, achieving a 261-fold increase in degradation efficiency for compounds such as phenol and sulfamethoxazole compared to unconfined analogs, outperforming most state-of-the-art Fenton-like systems. Our findings highlight the transformative potential of nanoconfined catalysis in environmental applications, providing an effective and scalable solution for sustainable water purification.

Abstract Image

城市污泥无模板纳米限制催化剂的超快水净化
非均相fenton类催化剂界面的纳米约束为推进水净化中的氧化过程提供了有前途的途径。在此,我们介绍了一种从城市污泥(S-NCCs)合成纳米限制催化剂的无模板策略,该策略专门设计用于优化活性氧(ROS)的生成和利用,以快速降解污染物。利用选择性氢氟酸腐蚀,我们创造了一种结构,将原子分散的铁中心限制在微介孔碳基质中。该方法最大限度地利用污泥中的硅和铝含量,防止金属团聚,并精确调节铁活性位点的化学环境。因此,S-NCCs促进了从非自由基到自由基/非自由基混合反应机制的转变,显著提高了ROS的效率、稳定性和污染物降解率。这些催化剂表现出卓越的污染物去除性能,与无限制类似物相比,对苯酚和磺胺甲恶唑等化合物的降解效率提高了261倍,优于大多数最先进的芬顿类系统。我们的研究结果强调了纳米限制催化在环境应用中的变革潜力,为可持续水净化提供了有效和可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信