Synthetic microbial community enhances lignocellulose degradation during composting by assembling fungal communities

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Qiumei Liu, Zhouling Xie, Siyu Tang, Qingquan Xie, Xunyang He, Dejun Li
{"title":"Synthetic microbial community enhances lignocellulose degradation during composting by assembling fungal communities","authors":"Qiumei Liu, Zhouling Xie, Siyu Tang, Qingquan Xie, Xunyang He, Dejun Li","doi":"10.1016/j.biortech.2025.132068","DOIUrl":null,"url":null,"abstract":"Inoculating synthetic microbial community (SynCom) has been proposed as an eco-friendly approach for lignocellulose degradation in composting to enhance organic fertilizer quality. However, the mechanisms responsible for SynCom-regulated lignocellulose degradation during composting remain unclear. Here the SynCom inoculation decreased cellulose and hemicellulose contents by 26.2% and 14.3%, respectively, at the mature phase, while increasing endoglucanase, exoglucanase, and β-glucosidase activities significantly. SynCom inoculation increased the abundance of <ce:italic>Cephaliophoras</ce:italic> and <ce:italic>Thermomyces</ce:italic> at the mesophilic phase, <ce:italic>Sordariomycetes</ce:italic> at the thermophilic phase, and <ce:italic>Thermomyces</ce:italic>, <ce:italic>Acremonium</ce:italic>, <ce:italic>Aspergillus</ce:italic>, and <ce:italic>Sordariomycetes</ce:italic> at the mature phase, as well as increased the abundance of numerous Operational Taxonomic Units (OTUs), with OTU10 (<ce:italic>Hydropisphaera</ce:italic>) being responsible for lignocellulose degradation. The altered fungal community stimulated functions of the wood saprotroph, undefined saprotroph, and litter saprotroph were responsible for lignocellulose degradation via changing microbial community. The results suggest that SynCom inoculation effectively stimulate lignocellulose degradation, so that benefits quality improvement of organic fertilizer.","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"37 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132068","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Inoculating synthetic microbial community (SynCom) has been proposed as an eco-friendly approach for lignocellulose degradation in composting to enhance organic fertilizer quality. However, the mechanisms responsible for SynCom-regulated lignocellulose degradation during composting remain unclear. Here the SynCom inoculation decreased cellulose and hemicellulose contents by 26.2% and 14.3%, respectively, at the mature phase, while increasing endoglucanase, exoglucanase, and β-glucosidase activities significantly. SynCom inoculation increased the abundance of Cephaliophoras and Thermomyces at the mesophilic phase, Sordariomycetes at the thermophilic phase, and Thermomyces, Acremonium, Aspergillus, and Sordariomycetes at the mature phase, as well as increased the abundance of numerous Operational Taxonomic Units (OTUs), with OTU10 (Hydropisphaera) being responsible for lignocellulose degradation. The altered fungal community stimulated functions of the wood saprotroph, undefined saprotroph, and litter saprotroph were responsible for lignocellulose degradation via changing microbial community. The results suggest that SynCom inoculation effectively stimulate lignocellulose degradation, so that benefits quality improvement of organic fertilizer.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信