Microbially degradable phenolic foams based on depolymerized Kraft lignin for hydrophilic applications

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Glen Cletus DSouza, Chonlong Chio, Aditya Venkatesh, Haoyu Wang, Madhumita B. Ray, Anand Prakash, Wensheng Qin, Chunbao Xu
{"title":"Microbially degradable phenolic foams based on depolymerized Kraft lignin for hydrophilic applications","authors":"Glen Cletus DSouza, Chonlong Chio, Aditya Venkatesh, Haoyu Wang, Madhumita B. Ray, Anand Prakash, Wensheng Qin, Chunbao Xu","doi":"10.1016/j.biortech.2025.132082","DOIUrl":null,"url":null,"abstract":"Hydrophilic phenol–formaldehyde (PF) foams, widely used in floral and hydroponic applications, are produced using phenol typically derived from non-renewable petroleum-based resources. This study examines the potential of depolymerized Kraft lignin (DKL) as a sustainable substitute for phenol in the synthesis of hydrophilic biobased foams. At 50 % DKL substitution, the foams demonstrated excellent water absorption capacities (up to 2557 %), relatively low densities (∼62 kg/m<ce:sup loc=\"post\">3</ce:sup>), and nearly 100 % open-cell content. Its compressive strength (20.64 kPa at 10 % deformation) is comparable to commercially available floral and hydroponic foams. Additionally, foams with 10 % phenol substitution by DKL exhibited better thermal stability compared to neat phenolic foams. After 15 days of incubation with Laccase-producing bacterium <ce:italic>Bacillus</ce:italic> sp., 30 % and 50 % DKL foams exhibited the highest weight loss of 39.03 % and 38.9 %, respectively. Qualitative degree of biodegradation was further assessed using scanning electron microscopy and FT-IR analysis of the degraded samples.","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"23 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132082","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrophilic phenol–formaldehyde (PF) foams, widely used in floral and hydroponic applications, are produced using phenol typically derived from non-renewable petroleum-based resources. This study examines the potential of depolymerized Kraft lignin (DKL) as a sustainable substitute for phenol in the synthesis of hydrophilic biobased foams. At 50 % DKL substitution, the foams demonstrated excellent water absorption capacities (up to 2557 %), relatively low densities (∼62 kg/m3), and nearly 100 % open-cell content. Its compressive strength (20.64 kPa at 10 % deformation) is comparable to commercially available floral and hydroponic foams. Additionally, foams with 10 % phenol substitution by DKL exhibited better thermal stability compared to neat phenolic foams. After 15 days of incubation with Laccase-producing bacterium Bacillus sp., 30 % and 50 % DKL foams exhibited the highest weight loss of 39.03 % and 38.9 %, respectively. Qualitative degree of biodegradation was further assessed using scanning electron microscopy and FT-IR analysis of the degraded samples.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信