N. P. Dover, O. Tresca, N. Cook, O. C. Ettlinger, R. J. Kingham, C. Maharjan, M. N. Polyanskiy, P. Shkolnikov, I. Pogorelsky, Z. Najmudin
{"title":"Optical Imaging of Laser-Driven Fast Electron Weibel-like Filamentation in Overcritical Density Plasma","authors":"N. P. Dover, O. Tresca, N. Cook, O. C. Ettlinger, R. J. Kingham, C. Maharjan, M. N. Polyanskiy, P. Shkolnikov, I. Pogorelsky, Z. Najmudin","doi":"10.1103/physrevlett.134.025102","DOIUrl":null,"url":null,"abstract":"We report on the measurement of filamented transport of laser-generated fast electron beams in near-critical density plasma. A relativistic intensity long-wave-infrared laser irradiated a hydrodynamically shaped helium gas flow at an electron density n</a:mi></a:mrow>e</a:mi></a:mrow></a:msub>≃</a:mo>10</a:mn></a:mrow>25</a:mn></a:mrow></a:msup></a:mtext></a:mtext>m</a:mi></a:mrow>−</a:mo>3</a:mn></a:mrow></a:msup></a:mrow></a:math>, generating a large flux of fast electrons that propagated beyond the critical surface. The beam-to-background electron density ratio was sufficiently high to drive growth of Weibel-like filamentation, which was measured by optical probing to extend up to <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mrow><d:mn>800</d:mn><d:mtext> </d:mtext><d:mtext> </d:mtext><d:mi mathvariant=\"normal\">μ</d:mi><d:mi mathvariant=\"normal\">m</d:mi></d:mrow></d:math> with radii <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mrow><h:mo>∼</h:mo><h:mn>10</h:mn><h:mtext> </h:mtext><h:mtext> </h:mtext><h:mi mathvariant=\"normal\">μ</h:mi><h:mi mathvariant=\"normal\">m</h:mi></h:mrow></h:math>. Particle-in-cell simulations reproduce the main features of the filamentation generation, suggesting that collisionless processes are dominant in these interactions. Expansion of the filaments after formation infers a fast electron heated plasma temperature <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:mo>∼</l:mo><l:mn>400</l:mn><l:mtext> </l:mtext><l:mtext> </l:mtext><l:mi>eV</l:mi></l:math> in the overcritical density plasma. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"24 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.025102","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report on the measurement of filamented transport of laser-generated fast electron beams in near-critical density plasma. A relativistic intensity long-wave-infrared laser irradiated a hydrodynamically shaped helium gas flow at an electron density ne≃1025m−3, generating a large flux of fast electrons that propagated beyond the critical surface. The beam-to-background electron density ratio was sufficiently high to drive growth of Weibel-like filamentation, which was measured by optical probing to extend up to 800μm with radii ∼10μm. Particle-in-cell simulations reproduce the main features of the filamentation generation, suggesting that collisionless processes are dominant in these interactions. Expansion of the filaments after formation infers a fast electron heated plasma temperature ∼400eV in the overcritical density plasma. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks