Donghui Xu, Gautam Bisht, Darren Engwirda, Dongyu Feng, Zeli Tan, Valeriy Y. Ivanov
{"title":"Uncertainties in Simulating Flooding During Hurricane Harvey Using 2D Shallow Water Equations","authors":"Donghui Xu, Gautam Bisht, Darren Engwirda, Dongyu Feng, Zeli Tan, Valeriy Y. Ivanov","doi":"10.1029/2024wr038032","DOIUrl":null,"url":null,"abstract":"Flooding is one of the most impactful weather-related natural hazards. Numerical models that solve the two dimensional (2D) shallow water equations (SWE) represent the first-principles approach to simulate all types of spatial flooding, such as pluvial, fluvial, and coastal flooding, and their compound dynamics. High spatial resolution (e.g., <span data-altimg=\"/cms/asset/93295735-ee5d-45b7-8772-0db8498f5c30/wrcr27642-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"91\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27642-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"script upper O\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27642:wrcr27642-math-0001\" display=\"inline\" location=\"graphic/wrcr27642-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic-role=\"latinletter\" data-semantic-speech=\"script upper O\" data-semantic-type=\"identifier\" mathvariant=\"script\">O</mi></mrow>$\\mathcal{O}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> (<span data-altimg=\"/cms/asset/64a5befb-e85d-48dc-a5fb-25a4738d96c7/wrcr27642-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"92\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27642-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"subtraction\" data-semantic-speech=\"10 Superscript 0 Baseline minus 10 Superscript 1\" data-semantic-type=\"infixop\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.393em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"4\" space=\"4\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\"4,5\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.393em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27642:wrcr27642-math-0002\" display=\"inline\" location=\"graphic/wrcr27642-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic-role=\"subtraction\" data-semantic-speech=\"10 Superscript 0 Baseline minus 10 Superscript 1\" data-semantic-type=\"infixop\"><msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">10</mn><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn></msup><mo data-semantic-=\"\" data-semantic-operator=\"infixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><msup data-semantic-=\"\" data-semantic-children=\"4,5\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\">10</mn><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></msup></mrow>${10}^{0}-{10}^{1}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) m) is needed in 2D SWE simulations to capture flood dynamics accurately, resulting in formidable computational challenges. Thus, relatively coarser spatial resolutions are used for large-scale simulations of flooding, which introduce uncertainties in the results. It is unclear how the uncertainty associated with the model resolution compares to the uncertainties in precipitation data sets and assumptions regarding boundary conditions when channelized flows interact with other water bodies. In this study, we compare these three sources of uncertainties in 2D SWE simulations for the 2017 Houston flooding event. Our results show that precipitation uncertainty and mesh resolution have more significant impacts on the simulated streamflow and inundation dynamics than the choice of the downstream boundary condition at the watershed outlet. We point out the viability to confine the uncertainty of coarsening mesh resolution by using the variable resolution mesh (VRM) which refines critical topographic features with far fewer grid cells. Specifically, in simulations with VRM, the simulated inundation depths over the refined region are comparable to that use the finest uniform mesh. This study contributes to understanding the challenges and pathways for applying 2D SWE models to improve the realism of flood simulations over large scales.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"96 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038032","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Flooding is one of the most impactful weather-related natural hazards. Numerical models that solve the two dimensional (2D) shallow water equations (SWE) represent the first-principles approach to simulate all types of spatial flooding, such as pluvial, fluvial, and coastal flooding, and their compound dynamics. High spatial resolution (e.g., () m) is needed in 2D SWE simulations to capture flood dynamics accurately, resulting in formidable computational challenges. Thus, relatively coarser spatial resolutions are used for large-scale simulations of flooding, which introduce uncertainties in the results. It is unclear how the uncertainty associated with the model resolution compares to the uncertainties in precipitation data sets and assumptions regarding boundary conditions when channelized flows interact with other water bodies. In this study, we compare these three sources of uncertainties in 2D SWE simulations for the 2017 Houston flooding event. Our results show that precipitation uncertainty and mesh resolution have more significant impacts on the simulated streamflow and inundation dynamics than the choice of the downstream boundary condition at the watershed outlet. We point out the viability to confine the uncertainty of coarsening mesh resolution by using the variable resolution mesh (VRM) which refines critical topographic features with far fewer grid cells. Specifically, in simulations with VRM, the simulated inundation depths over the refined region are comparable to that use the finest uniform mesh. This study contributes to understanding the challenges and pathways for applying 2D SWE models to improve the realism of flood simulations over large scales.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.