Thermoeconomic analysis of an integrated membrane reactor and carbon dioxide capture system producing decarbonized hydrogen

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Yagmur Nalbant Atak, Alper Can Ince, C.Ozgur Colpan, Adolfo Iulianelli, Mustafa Fazil Serincan, Ugur Pasaogullari
{"title":"Thermoeconomic analysis of an integrated membrane reactor and carbon dioxide capture system producing decarbonized hydrogen","authors":"Yagmur Nalbant Atak, Alper Can Ince, C.Ozgur Colpan, Adolfo Iulianelli, Mustafa Fazil Serincan, Ugur Pasaogullari","doi":"10.1016/j.enconman.2025.119506","DOIUrl":null,"url":null,"abstract":"In this study, a novel thermo-economic analysis on a membrane reactor adopted to generate hydrogen, coupled to a carbon-dioxide capture system, is proposed. Exergy destruction, fuel, and environmental as well as purchased equipment costs have been accounted to estimate the cost of hydrogen production in the aforementioned integrated plant. It has been found that the integration of the CO<ce:inf loc=\"post\">2</ce:inf> capture system with the membrane reactor is responsible for the reduction of the hydrogen production cost by 12 % due to the decrease in environmental penalty cost. In addition, the effects of operating parameters (steam-to-carbo ratio and biogas temperature) on the hydrogen production cost are investigated. Hence, this work demonstrates that the latter can be decreased by approximately 2 <mml:math altimg=\"si75.svg\"><mml:mrow><mml:mi mathvariant=\"normal\">$</mml:mi><mml:mo stretchy=\"false\">/</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"italic\">kg</mml:mi></mml:mrow><mml:msub><mml:mi>H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:msub></mml:mrow></mml:math> when steam to carbon ratio increases from 1.5 to 4. The analyses reveal that steam-to-carbo ratio increases exergy destruction cost, affecting consequently also the hydrogen production cost. However, from a thermodynamic point of view, it enhances the hydrogen production in the membrane reactor, mutually lowering the hydrogen production cost. It has been also estimated that a decrease in the biogas inlet temperature from 450 to 400°C can reduce the hydrogen production cost by 7 %. This study demonstrates that the fuel cost is a major economic parameter affecting commercialization of hydrogen production, while exergy destruction and environmental costs are also significant factors in determining the hydrogen production cost.","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"24 1","pages":""},"PeriodicalIF":9.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enconman.2025.119506","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel thermo-economic analysis on a membrane reactor adopted to generate hydrogen, coupled to a carbon-dioxide capture system, is proposed. Exergy destruction, fuel, and environmental as well as purchased equipment costs have been accounted to estimate the cost of hydrogen production in the aforementioned integrated plant. It has been found that the integration of the CO2 capture system with the membrane reactor is responsible for the reduction of the hydrogen production cost by 12 % due to the decrease in environmental penalty cost. In addition, the effects of operating parameters (steam-to-carbo ratio and biogas temperature) on the hydrogen production cost are investigated. Hence, this work demonstrates that the latter can be decreased by approximately 2 $/kgH2 when steam to carbon ratio increases from 1.5 to 4. The analyses reveal that steam-to-carbo ratio increases exergy destruction cost, affecting consequently also the hydrogen production cost. However, from a thermodynamic point of view, it enhances the hydrogen production in the membrane reactor, mutually lowering the hydrogen production cost. It has been also estimated that a decrease in the biogas inlet temperature from 450 to 400°C can reduce the hydrogen production cost by 7 %. This study demonstrates that the fuel cost is a major economic parameter affecting commercialization of hydrogen production, while exergy destruction and environmental costs are also significant factors in determining the hydrogen production cost.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信