{"title":"Multi-objective optimization control for shield cutter wear and cutting performance using LightGBM and enhanced NSGA-II","authors":"Ziwei Yin, Jianwei Jiao, Ping Xie, Hanbin Luo, Linchun Wei","doi":"10.1016/j.autcon.2024.105957","DOIUrl":null,"url":null,"abstract":"Varying results in cutter wear and cutting performance can be observed based on different selections of shield operational parameters, particularly in hard rock or soil with a high quartz content. Improperly selecting operational parameters may result in excessive wear and reduced cutting performance, leading to longer project duration and increased costs. Furthermore, it is still challenging to balance cutter wear and cutting performance. To address these issues, a multi-objective optimization (MOO) framework based on the Light Gradient Boosting Machine (LightGBM) algorithm and the enhanced non-dominated sorting genetic-II (NSGA-II) algorithm is proposed to predict and optimize the cutter wear and cutting performance. To validate this framework, a shield tunneling project in China is presented. The results show that the efficiency and accuracy of predicting and optimizing the two objectives have been improved compared with other common methods. This MOO framework is valuable for operators to formulate rational operational control strategies.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"96 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105957","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Varying results in cutter wear and cutting performance can be observed based on different selections of shield operational parameters, particularly in hard rock or soil with a high quartz content. Improperly selecting operational parameters may result in excessive wear and reduced cutting performance, leading to longer project duration and increased costs. Furthermore, it is still challenging to balance cutter wear and cutting performance. To address these issues, a multi-objective optimization (MOO) framework based on the Light Gradient Boosting Machine (LightGBM) algorithm and the enhanced non-dominated sorting genetic-II (NSGA-II) algorithm is proposed to predict and optimize the cutter wear and cutting performance. To validate this framework, a shield tunneling project in China is presented. The results show that the efficiency and accuracy of predicting and optimizing the two objectives have been improved compared with other common methods. This MOO framework is valuable for operators to formulate rational operational control strategies.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.