Continuous photo-oxidation of methane to methanol at an atomically tailored reticular gas-solid interface

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuchen Hao, Liwei Chen, Haodong Liu, Wenfeng Nie, Xiangjie Ge, Jiani Li, Hui-Zi Huang, Chao Sun, Cuncai Lv, Shangbo Ning, Linjie Gao, Yaguang Li, Shufang Wang, An-Xiang Yin, Bo Wang, Jinhua Ye
{"title":"Continuous photo-oxidation of methane to methanol at an atomically tailored reticular gas-solid interface","authors":"Yuchen Hao, Liwei Chen, Haodong Liu, Wenfeng Nie, Xiangjie Ge, Jiani Li, Hui-Zi Huang, Chao Sun, Cuncai Lv, Shangbo Ning, Linjie Gao, Yaguang Li, Shufang Wang, An-Xiang Yin, Bo Wang, Jinhua Ye","doi":"10.1038/s41467-025-56180-7","DOIUrl":null,"url":null,"abstract":"<p>Photo-oxidation of methane (CH<sub>4</sub>) using hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) synthesized in situ from air and water under sunlight offers an attractive route for producing green methanol while storing intermittent solar energy. However, in commonly used aqueous-phase systems, photocatalysis efficiency is severely limited due to the ultralow availability of CH<sub>4</sub> gas and H<sub>2</sub>O<sub>2</sub> intermediate at the flooded interface. Here, we report an atomically modified metal-organic framework (MOF) membrane nanoreactor that promotes direct CH<sub>4</sub> photo-oxidation to methanol at the gas-solid interface in a reticular open framework. We show that the domino synergy between colocalized single-atom palladium and iron on MOF nodes enables efficient generation and in situ utilization of H<sub>2</sub>O<sub>2</sub> in the absence of liquid water, thus circumventing H<sub>2</sub>O<sub>2</sub> dilution. Meanwhile, the “breathable” MOF membrane, optimized by solar-driven interfacial water management, provides high-flux channels to facilitate efficient gas diffusion and rapid methanol desorption and transfer. As a result, we demonstrate over 210 hours of continuous photosynthesis of 0.25 M methanol with unity selectivity, achieving an exceptional methanol productivity of 14.4 millimoles per gram of catalyst per hour.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"55 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56180-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Photo-oxidation of methane (CH4) using hydrogen peroxide (H2O2) synthesized in situ from air and water under sunlight offers an attractive route for producing green methanol while storing intermittent solar energy. However, in commonly used aqueous-phase systems, photocatalysis efficiency is severely limited due to the ultralow availability of CH4 gas and H2O2 intermediate at the flooded interface. Here, we report an atomically modified metal-organic framework (MOF) membrane nanoreactor that promotes direct CH4 photo-oxidation to methanol at the gas-solid interface in a reticular open framework. We show that the domino synergy between colocalized single-atom palladium and iron on MOF nodes enables efficient generation and in situ utilization of H2O2 in the absence of liquid water, thus circumventing H2O2 dilution. Meanwhile, the “breathable” MOF membrane, optimized by solar-driven interfacial water management, provides high-flux channels to facilitate efficient gas diffusion and rapid methanol desorption and transfer. As a result, we demonstrate over 210 hours of continuous photosynthesis of 0.25 M methanol with unity selectivity, achieving an exceptional methanol productivity of 14.4 millimoles per gram of catalyst per hour.

Abstract Image

在原子定制的网状气固界面上连续光氧化甲烷生成甲醇
利用空气和水在阳光下原位合成的过氧化氢(H2O2)光氧化甲烷(CH4),为在储存间歇性太阳能的同时生产绿色甲醇提供了一条有吸引力的途径。然而,在常用的水相体系中,由于水淹界面上CH4气体和H2O2中间体的极低可用性,光催化效率受到严重限制。在这里,我们报道了一种原子修饰的金属有机框架(MOF)膜纳米反应器,该反应器在网状开放框架的气固界面上促进CH4直接光氧化为甲醇。研究表明,MOF节点上共定位的单原子钯和铁之间的多米诺骨牌协同作用能够在没有液态水的情况下高效地生成和原位利用H2O2,从而避免H2O2稀释。同时,通过太阳能驱动界面水管理优化的“透气”MOF膜提供了高通量通道,促进了高效的气体扩散和甲醇的快速解吸和转移。结果,我们证明了在0.25 M甲醇的条件下,以单位选择性连续光合作用超过210小时,实现了每克催化剂每小时14.4毫摩尔的卓越甲醇生产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信