Creating chromaticity palettes and identifying white light emitters through nanocrystal megalibraries

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tong Cai, Donghoon Shin, Jun Li, David D. Xu, Jacob Pietryga, Ye Zhang, Chad A. Mirkin
{"title":"Creating chromaticity palettes and identifying white light emitters through nanocrystal megalibraries","authors":"Tong Cai,&nbsp;Donghoon Shin,&nbsp;Jun Li,&nbsp;David D. Xu,&nbsp;Jacob Pietryga,&nbsp;Ye Zhang,&nbsp;Chad A. Mirkin","doi":"10.1126/sciadv.ads4453","DOIUrl":null,"url":null,"abstract":"<div >Halide perovskites are used to fabricate energy-efficient optoelectronic devices. Determining which compositions yield desired chromatic responses is challenging, especially when doping strategies are used. Here, we report a way of mapping the compositional space of halide perovskites to generate a light emission or “chromaticity” palette. Megalibraries consisting of millions of Mn<sup>2+</sup>-doped PEA<sub>2</sub>PbX<sub>4</sub> (PEA: phenethylammonium, X: halide anions) perovskite nanocrystals were synthesized to screen the compositions that led to specific emission profiles. The chromaticity palette allows one to identify single-composition white light emitters [PEA<sub>2</sub>Pb<sub>1−<i>y</i></sub>Mn<i><sub>y</sub></i>(Br<sub>1−<i>x</i></sub>I<i><sub>x</sub></i>)<sub>4</sub> (0 ≤ <i>x</i> ≤ 1, 0 ≤ <i>y</i> ≤ 1)], eliminating the need for trilayer structures in conventional white light-emitting diodes, which are prone to instability and complex device designs. Optical studies reveal that the dual-wavelength photoluminescence emission originates from exciton recombination and energy transfer processes. This study shows how emerging megalibrary capabilities can rapidly advance our understanding of the complex composition-structure-function relationships and be used to accelerate the discovery of next-generation optoelectronic materials.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 3","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads4453","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads4453","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Halide perovskites are used to fabricate energy-efficient optoelectronic devices. Determining which compositions yield desired chromatic responses is challenging, especially when doping strategies are used. Here, we report a way of mapping the compositional space of halide perovskites to generate a light emission or “chromaticity” palette. Megalibraries consisting of millions of Mn2+-doped PEA2PbX4 (PEA: phenethylammonium, X: halide anions) perovskite nanocrystals were synthesized to screen the compositions that led to specific emission profiles. The chromaticity palette allows one to identify single-composition white light emitters [PEA2Pb1−yMny(Br1−xIx)4 (0 ≤ x ≤ 1, 0 ≤ y ≤ 1)], eliminating the need for trilayer structures in conventional white light-emitting diodes, which are prone to instability and complex device designs. Optical studies reveal that the dual-wavelength photoluminescence emission originates from exciton recombination and energy transfer processes. This study shows how emerging megalibrary capabilities can rapidly advance our understanding of the complex composition-structure-function relationships and be used to accelerate the discovery of next-generation optoelectronic materials.

Abstract Image

创建色度调色板,并通过纳米晶体巨型文库识别白光发射器
卤化物钙钛矿用于制造高能效光电器件。确定哪些组合物产生所需的色响应是具有挑战性的,特别是当使用掺杂策略时。在这里,我们报告了一种映射卤化物钙钛矿组成空间的方法,以产生发光或“色度”调色板。合成了由数百万个Mn 2+掺杂的PEA 2 PbX 4 (PEA:苯乙基铵,X:卤化物阴离子)钙钛矿纳米晶体组成的巨型文库,以筛选导致特定发射谱的成分。色度调色板允许人们识别单一成分的白光发射器[PEA 2 Pb 1−y Mn y (Br 1−x I x) 4(0≤x≤1,0≤y≤1)],消除了传统白光二极管中容易不稳定和复杂器件设计的三层结构的需要。光学研究表明,双波长光致发光是由激子复合和能量转移过程引起的。这项研究表明,新兴的巨库功能如何快速推进我们对复杂的成分-结构-功能关系的理解,并用于加速下一代光电材料的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信