{"title":"Synergizing Process Conditions, Water Sensitivity, and Kinetic Mechanisms to Optimize Sodium Salicylate Yield in Sodium Phenol Carboxylation","authors":"Haodong Zhang, Junmei Zhang, Jingjing Ma, Maoqian Wu, Linbo Hu, Hongfu Chen, Zhenya Duan","doi":"10.1021/acs.oprd.4c00383","DOIUrl":null,"url":null,"abstract":"Sodium salicylate can be formed by carboxylation of solid sodium phenol particles with carbon dioxide gas under certain conditions. Single-factor experiments were carried out with self-made dried sodium phenol particles in a batch high-pressure reactor. It was determined that the carboxylation reaction of sodium phenol particles was more suitable under the conditions of a reaction temperature of 160 °C, a reaction pressure of 0.55 MPa, a reaction time of about 40 min, and a stirring speed of 50 rpm. Besides that, the water content of the material also had important effects on the yield. Through the establishment of the kinetic model of the carboxylation reaction between solid sodium phenol particles and carbon dioxide gas, the control step of the reaction temperature at 150 and 160 °C was determined as ash layer diffusion, and the kinetic equation was further calculated. The research results can provide the basic technological conditions and kinetic data of the carboxylation reaction of sodium phenol particles and provide a reference for the development of a continuous and efficient production process of sodium phenol carboxylation.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"49 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00383","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium salicylate can be formed by carboxylation of solid sodium phenol particles with carbon dioxide gas under certain conditions. Single-factor experiments were carried out with self-made dried sodium phenol particles in a batch high-pressure reactor. It was determined that the carboxylation reaction of sodium phenol particles was more suitable under the conditions of a reaction temperature of 160 °C, a reaction pressure of 0.55 MPa, a reaction time of about 40 min, and a stirring speed of 50 rpm. Besides that, the water content of the material also had important effects on the yield. Through the establishment of the kinetic model of the carboxylation reaction between solid sodium phenol particles and carbon dioxide gas, the control step of the reaction temperature at 150 and 160 °C was determined as ash layer diffusion, and the kinetic equation was further calculated. The research results can provide the basic technological conditions and kinetic data of the carboxylation reaction of sodium phenol particles and provide a reference for the development of a continuous and efficient production process of sodium phenol carboxylation.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.