Boosting Cu Ions Capture in High-Salinity Environments with Amino-Functionalized Millispheres

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-01-17 DOI:10.1039/d4nr04517c
Jiaming Hu, Jianheng Hong, Weiting Yu, Xiuzhen Wei, Meilan Pan
{"title":"Boosting Cu Ions Capture in High-Salinity Environments with Amino-Functionalized Millispheres","authors":"Jiaming Hu, Jianheng Hong, Weiting Yu, Xiuzhen Wei, Meilan Pan","doi":"10.1039/d4nr04517c","DOIUrl":null,"url":null,"abstract":"High salinity in wastewater often hampers the performance of traditional adsorbents by disrupting electrostatic interactions and ion exchange processes, limiting their efficiency. This study addresses these challenges by investigating the salt-promoted adsorption of Cu ions onto amino-functionalized chloromethylated polystyrene microspheres (EDA@CMPS). The adsorbent was synthesized by grafting ethylenediamine (EDA) onto CMPS, which significantly improved Cu adsorption, achieving nearly three times the capacity in saline solutions (1.65 mmol/g) compared to non-saline solutions (0.66 mmol/g). Mechanistic analysis showed that the presence of salts, such as NaCl, promoted the protonation of amino groups on EDA@CMPS, increasing their positive charge and enhancing their affinity for Cu ions. The solution's ionic strength further amplified this protonation, reducing electrostatic repulsion between the adsorbent and Cu ions, thus improving binding efficiency. Additionally, the increased ionic strength altered Cu speciation, favoring the formation of Cu(NH₃)₄²⁺ complexes, which were more easily adsorbed. These synergistic effects resulted in faster adsorption kinetics, higher capacity, and improved Cu ions removal, particularly in saline environments. Overall, these findings bridge the gap between material design and functional performance in high-salinity wastewater, offering a promising strategy for efficient heavy metal removal and environmental remediation.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04517c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High salinity in wastewater often hampers the performance of traditional adsorbents by disrupting electrostatic interactions and ion exchange processes, limiting their efficiency. This study addresses these challenges by investigating the salt-promoted adsorption of Cu ions onto amino-functionalized chloromethylated polystyrene microspheres (EDA@CMPS). The adsorbent was synthesized by grafting ethylenediamine (EDA) onto CMPS, which significantly improved Cu adsorption, achieving nearly three times the capacity in saline solutions (1.65 mmol/g) compared to non-saline solutions (0.66 mmol/g). Mechanistic analysis showed that the presence of salts, such as NaCl, promoted the protonation of amino groups on EDA@CMPS, increasing their positive charge and enhancing their affinity for Cu ions. The solution's ionic strength further amplified this protonation, reducing electrostatic repulsion between the adsorbent and Cu ions, thus improving binding efficiency. Additionally, the increased ionic strength altered Cu speciation, favoring the formation of Cu(NH₃)₄²⁺ complexes, which were more easily adsorbed. These synergistic effects resulted in faster adsorption kinetics, higher capacity, and improved Cu ions removal, particularly in saline environments. Overall, these findings bridge the gap between material design and functional performance in high-salinity wastewater, offering a promising strategy for efficient heavy metal removal and environmental remediation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信