{"title":"Acidic Engineering on Buried Interface toward Efficient Inorganic CsPbI3 Perovskite Light-Emitting Diodes","authors":"Wenji Zhan, Jingjing Cao, Haifei Wang, Meng Ren, Menglei Feng, Yingping Fan, Jiahao Guo, Yao Wang, Yuetian Chen, Yanfeng Miao, Yixin Zhao","doi":"10.1021/acs.nanolett.4c05694","DOIUrl":null,"url":null,"abstract":"Inorganic CsPbI<sub>3</sub> perovskite has emerged as a promising emitter for deep-red light-emitting diodes (LEDs) due to its intrinsic thermal stability and suitable bandgap. However, uncontrollable CsPbI<sub>3</sub> crystallization induced by an alkaline zinc oxide (ZnO) substrate in bulk film-based LEDs leads to insufficient external quantum efficiencies (EQEs) at high brightness, leaving obstacles in commercialization progress. Herein, we demonstrate an effective acidic engineering strategy with wide applicability to modify the surface property of ZnO and regulate CsPbI<sub>3</sub> crystallization. Via systematically selecting 1,4-cyclohexanedicarboxylic acid with a mild acid dissociation constant to functionalize the buried interface, we mitigate the speed of the deprotonation reaction and achieve homogeneous CsPbI<sub>3</sub> films with high phase purity and fewer defects. The resulting CsPbI<sub>3</sub> perovskite LEDs (PeLEDs) exhibit a record EQE of 19.4% at a high luminance of 3400 cd m<sup>–2</sup>, representing the state-of-art bulk CsPbI<sub>3</sub> PeLEDs. These findings provide valuable insights in the advancement of efficient CsPbI<sub>3</sub> PeLEDs.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"30 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05694","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inorganic CsPbI3 perovskite has emerged as a promising emitter for deep-red light-emitting diodes (LEDs) due to its intrinsic thermal stability and suitable bandgap. However, uncontrollable CsPbI3 crystallization induced by an alkaline zinc oxide (ZnO) substrate in bulk film-based LEDs leads to insufficient external quantum efficiencies (EQEs) at high brightness, leaving obstacles in commercialization progress. Herein, we demonstrate an effective acidic engineering strategy with wide applicability to modify the surface property of ZnO and regulate CsPbI3 crystallization. Via systematically selecting 1,4-cyclohexanedicarboxylic acid with a mild acid dissociation constant to functionalize the buried interface, we mitigate the speed of the deprotonation reaction and achieve homogeneous CsPbI3 films with high phase purity and fewer defects. The resulting CsPbI3 perovskite LEDs (PeLEDs) exhibit a record EQE of 19.4% at a high luminance of 3400 cd m–2, representing the state-of-art bulk CsPbI3 PeLEDs. These findings provide valuable insights in the advancement of efficient CsPbI3 PeLEDs.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.