Sung-Hyun Hong, So Young An, Changkon Park, Youngim Kim, Eun-Hee Kim, Nak-Kyoon Kim, Jeong-Yong Suh
{"title":"Structural variants of AcrIIC5 inhibit Cas9 via divergent binding interfaces","authors":"Sung-Hyun Hong, So Young An, Changkon Park, Youngim Kim, Eun-Hee Kim, Nak-Kyoon Kim, Jeong-Yong Suh","doi":"10.1016/j.str.2024.12.014","DOIUrl":null,"url":null,"abstract":"CRISPR-Cas is a bacterial defense system that employs RNA-guided endonucleases to destroy invading foreign nucleic acids. Bacteriophages produce anti-CRISPR (Acr) proteins to evade CRISPR-Cas defense during the infection. AcrIIC5, a type II-C Cas9 inhibitor, exhibits unusual variations in the local backbone fold between its orthologs. Here we investigated how the folding variations affect the inhibition of target Cas9 using AcrIIC5 orthologs. Structural comparison of free AcrIIC5<sub>Smu</sub> and AcrIIC5<sub>Nch</sub> confirmed that the folding variation correlated with characteristic indels in the helical region. Mutagenesis and biochemical assays combined with AlphaFold2 predictions identified key residues of AcrIIC5 orthologs important for Cas9 inhibition. Remarkably, AcrIIC5 orthologs employed divergent binding interfaces via folding variations to inhibit the Cas9 targets. Our study suggests that Acr proteins have evolved structural variants to diversify key interfaces for target Cas9, which could be beneficial for the adaptation of phages to evasive mutations on the Cas9 surface.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"4 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.12.014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR-Cas is a bacterial defense system that employs RNA-guided endonucleases to destroy invading foreign nucleic acids. Bacteriophages produce anti-CRISPR (Acr) proteins to evade CRISPR-Cas defense during the infection. AcrIIC5, a type II-C Cas9 inhibitor, exhibits unusual variations in the local backbone fold between its orthologs. Here we investigated how the folding variations affect the inhibition of target Cas9 using AcrIIC5 orthologs. Structural comparison of free AcrIIC5Smu and AcrIIC5Nch confirmed that the folding variation correlated with characteristic indels in the helical region. Mutagenesis and biochemical assays combined with AlphaFold2 predictions identified key residues of AcrIIC5 orthologs important for Cas9 inhibition. Remarkably, AcrIIC5 orthologs employed divergent binding interfaces via folding variations to inhibit the Cas9 targets. Our study suggests that Acr proteins have evolved structural variants to diversify key interfaces for target Cas9, which could be beneficial for the adaptation of phages to evasive mutations on the Cas9 surface.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.