Effects of Sodium Sources on Nonaqueous Precipitation Synthesis of β″-Al2O3 and Formation Mechanism of Uniform Ionic Channels

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Xiaolong Huang, Guo Feng, Jun Mu, Yan Li, Weifeng Xie, Fukun Wu, Zhiqi Guo, Yanqiao Xu, Zhongjie Wang, Feng Jiang
{"title":"Effects of Sodium Sources on Nonaqueous Precipitation Synthesis of β″-Al2O3 and Formation Mechanism of Uniform Ionic Channels","authors":"Xiaolong Huang, Guo Feng, Jun Mu, Yan Li, Weifeng Xie, Fukun Wu, Zhiqi Guo, Yanqiao Xu, Zhongjie Wang, Feng Jiang","doi":"10.1021/acs.langmuir.4c04641","DOIUrl":null,"url":null,"abstract":"High-temperature and long-term sintering of β″-Al<sub>2</sub>O<sub>3</sub> solid electrolyte (Beta″ Alumina Solid Electrolyte, BASE) can easily cause Na<sub>2</sub>O volatilization. It reduces the solid electrolyte (SE) quality, resulting in low ion conductivity of the electrolyte. It is also difficult to form uniform ionic channels. This work designs a simple nonaqueous precipitation through de-etherification heterogeneous polymerization reaction between optimal sodium source sodium ethoxide and aluminum isopropoxide to synthesize highly active precursor powders with Na–O–Al as the skeleton, effectively reducing the synthesis and sintering temperatures of β″-Al<sub>2</sub>O<sub>3</sub> solid electrolyte and minimizing the Na<sub>2</sub>O volatilization. Importantly, residual organic groups and a low synthesis temperature of 1150 °C promote the formation of in situ carbon uniformly. In-situ carbon with a mass fraction of about 3.98% will form uniformly distributed ion transport channels with a diameter of 1–3 μm when sintering at 1580 °C. These channels ensure a migration rate of sodium ions and ion conductivity of β″-Al<sub>2</sub>O<sub>3</sub> solid electrolyte of 0.028 S/cm at 300 °C.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"60 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04641","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature and long-term sintering of β″-Al2O3 solid electrolyte (Beta″ Alumina Solid Electrolyte, BASE) can easily cause Na2O volatilization. It reduces the solid electrolyte (SE) quality, resulting in low ion conductivity of the electrolyte. It is also difficult to form uniform ionic channels. This work designs a simple nonaqueous precipitation through de-etherification heterogeneous polymerization reaction between optimal sodium source sodium ethoxide and aluminum isopropoxide to synthesize highly active precursor powders with Na–O–Al as the skeleton, effectively reducing the synthesis and sintering temperatures of β″-Al2O3 solid electrolyte and minimizing the Na2O volatilization. Importantly, residual organic groups and a low synthesis temperature of 1150 °C promote the formation of in situ carbon uniformly. In-situ carbon with a mass fraction of about 3.98% will form uniformly distributed ion transport channels with a diameter of 1–3 μm when sintering at 1580 °C. These channels ensure a migration rate of sodium ions and ion conductivity of β″-Al2O3 solid electrolyte of 0.028 S/cm at 300 °C.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信