Magdalena Djordjevic, Lidija Zivkovic, Hong-Yu Ou, Marko Djordjevic
{"title":"Nonlinear regulatory dynamics of bacterial restriction-modification systems modulates horizontal gene transfer susceptibility","authors":"Magdalena Djordjevic, Lidija Zivkovic, Hong-Yu Ou, Marko Djordjevic","doi":"10.1093/nar/gkae1322","DOIUrl":null,"url":null,"abstract":"Type II restriction-modification (R–M) systems play a pivotal role in bacterial defense against invading DNA, influencing the spread of pathogenic traits. These systems often involve coordinated expression of a regulatory protein (C) with restriction (R) enzymes, employing complex feedback loops for regulation. Recent studies highlight the crucial balance between R and M enzymes in controlling horizontal gene transfer (HGT). This manuscript introduces a mathematical model reflecting R–M system dynamics, informed by biophysical evidence, to minimize reliance on arbitrary parameters. Our analysis clarifies the observed variations in M-to-R ratios, emphasizing the regulatory role of the C protein. We analytically derived a stability diagram for C-regulated R–M systems, offering a more straightforward analysis method over traditional numerical approaches. Our findings reveal conditions leading to both monostability and bistability, linking changes in the M-to-R ratio to factors like cell division timing and plasmid replication rates. These variations may link adjusting defense against phage infection, or the acquisition of new genes such as antibiotic resistance determinants, to changing physiological conditions. We also performed stochastic simulations to show that system regulation may significantly increase M-to-R ratio variability, providing an additional mechanism to generate heterogeneity in bacterial population.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"205 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1322","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type II restriction-modification (R–M) systems play a pivotal role in bacterial defense against invading DNA, influencing the spread of pathogenic traits. These systems often involve coordinated expression of a regulatory protein (C) with restriction (R) enzymes, employing complex feedback loops for regulation. Recent studies highlight the crucial balance between R and M enzymes in controlling horizontal gene transfer (HGT). This manuscript introduces a mathematical model reflecting R–M system dynamics, informed by biophysical evidence, to minimize reliance on arbitrary parameters. Our analysis clarifies the observed variations in M-to-R ratios, emphasizing the regulatory role of the C protein. We analytically derived a stability diagram for C-regulated R–M systems, offering a more straightforward analysis method over traditional numerical approaches. Our findings reveal conditions leading to both monostability and bistability, linking changes in the M-to-R ratio to factors like cell division timing and plasmid replication rates. These variations may link adjusting defense against phage infection, or the acquisition of new genes such as antibiotic resistance determinants, to changing physiological conditions. We also performed stochastic simulations to show that system regulation may significantly increase M-to-R ratio variability, providing an additional mechanism to generate heterogeneity in bacterial population.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.