Weiqiang Lin, Yisu Li, Chuan Qiu, Binghao Zou, Yun Gong, Xiao Zhang, Di Tian, William Sherman, Fernando Sanchez, Di Wu, Kuan-Jui Su, Xinyi Xiao, Zhe Luo, Qing Tian, Yiping Chen, Hui Shen, Hongwen Deng
{"title":"Mapping the spatial atlas of the human bone tissue integrating spatial and single-cell transcriptomics","authors":"Weiqiang Lin, Yisu Li, Chuan Qiu, Binghao Zou, Yun Gong, Xiao Zhang, Di Tian, William Sherman, Fernando Sanchez, Di Wu, Kuan-Jui Su, Xinyi Xiao, Zhe Luo, Qing Tian, Yiping Chen, Hui Shen, Hongwen Deng","doi":"10.1093/nar/gkae1298","DOIUrl":null,"url":null,"abstract":"Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue. This multi-modal approach discovered a novel bone formation-specialized niche enriched with osteoblastic lineage cells and fibroblasts and unveiled critical cell–cell communications and co-localization patterns between osteoblastic lineage cells and other cells. Furthermore, we discovered a novel spatial gradient of cellular composition, gene expression and signaling pathway activities radiating from the trabecular bone. This comprehensive atlas delineates the intricate bone cellular architecture and illuminates key molecular processes and dependencies among cells that coordinate bone metabolism. In sum, our study provides an essential reference for the field of bone biology and lays the foundation for advanced mechanistic studies and precision medicine approaches in bone-related disorders.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"4 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1298","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue. This multi-modal approach discovered a novel bone formation-specialized niche enriched with osteoblastic lineage cells and fibroblasts and unveiled critical cell–cell communications and co-localization patterns between osteoblastic lineage cells and other cells. Furthermore, we discovered a novel spatial gradient of cellular composition, gene expression and signaling pathway activities radiating from the trabecular bone. This comprehensive atlas delineates the intricate bone cellular architecture and illuminates key molecular processes and dependencies among cells that coordinate bone metabolism. In sum, our study provides an essential reference for the field of bone biology and lays the foundation for advanced mechanistic studies and precision medicine approaches in bone-related disorders.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.