Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Haiyang Chen, Yuting Huang, Rui Zhang, Hongyu Mou, Junyuan Ding, Jiadong Zhou, Zukun Wang, Hongxiang Li, Weijie Chen, Juan Zhu, Qinrong Cheng, Hao Gu, Xiaoxiao Wu, Tianjiao Zhang, Yingyi Wang, Haiming Zhu, Zengqi Xie, Feng Gao, Yaowen Li, Yongfang Li
{"title":"Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation","authors":"Haiyang Chen, Yuting Huang, Rui Zhang, Hongyu Mou, Junyuan Ding, Jiadong Zhou, Zukun Wang, Hongxiang Li, Weijie Chen, Juan Zhu, Qinrong Cheng, Hao Gu, Xiaoxiao Wu, Tianjiao Zhang, Yingyi Wang, Haiming Zhu, Zengqi Xie, Feng Gao, Yaowen Li, Yongfang Li","doi":"10.1038/s41563-024-02062-0","DOIUrl":null,"url":null,"abstract":"Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers. When adding AT-β2O in the donor (D18-Cl) and acceptor (N3) blend, N3 crystallizes behind D18-Cl, and this phenomenon is different from the co-crystallization observed in binary D18-Cl:N3 blends. This manipulation of crystallization dynamics is favourable to form bulk-heterojunction-gradient vertical phase separation in the active layer accompanied by the high crystallinity of the acceptor and balanced charge carrier mobilities in thick films. The resultant single-junction organic solar cells exhibited a certified power conversion efficiency of over 20%, as well as demonstrated exceptional adaptability across the active layer thicknesses (100–400 nm) and remarkable universality. Such breakthroughs enable large-area modules with a certified power conversion efficiency of 18.04%. An organic regulator that can tune the crystallization sequence of active layer components has been described, achieving a certified efficiency of over 20% in single-junction organic solar cells, demonstrating remarkable tolerance for active layer thickness of 100–400 nm.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"24 3","pages":"444-453"},"PeriodicalIF":37.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-02062-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers. When adding AT-β2O in the donor (D18-Cl) and acceptor (N3) blend, N3 crystallizes behind D18-Cl, and this phenomenon is different from the co-crystallization observed in binary D18-Cl:N3 blends. This manipulation of crystallization dynamics is favourable to form bulk-heterojunction-gradient vertical phase separation in the active layer accompanied by the high crystallinity of the acceptor and balanced charge carrier mobilities in thick films. The resultant single-junction organic solar cells exhibited a certified power conversion efficiency of over 20%, as well as demonstrated exceptional adaptability across the active layer thicknesses (100–400 nm) and remarkable universality. Such breakthroughs enable large-area modules with a certified power conversion efficiency of 18.04%. An organic regulator that can tune the crystallization sequence of active layer components has been described, achieving a certified efficiency of over 20% in single-junction organic solar cells, demonstrating remarkable tolerance for active layer thickness of 100–400 nm.

Abstract Image

Abstract Image

通过晶化顺序控制,有机太阳能电池具有20.82%的效率和较高的活性层厚度耐受性
大面积太阳能电池板的印刷需要具有厚活性层的先进有机太阳能电池。然而,增加有源层厚度通常会导致功率转换效率的显著下降。在这里,我们开发了一种称为AT-β 20的有机半导体调节器,用于调节有源层中组件的结晶顺序。在给体(D18-Cl)和受体(N3)共混体系中加入AT-β2O时,N3在D18-Cl后面结晶,这与D18-Cl:N3二元共混体系的共结晶现象不同。这种对结晶动力学的操纵有利于在活性层中形成体-异质结-梯度垂直相分离,并伴随着受体的高结晶度和厚膜中平衡的载流子迁移率。所得的单结有机太阳能电池显示出超过20%的认证功率转换效率,并且表现出跨有源层厚度(100-400 nm)的卓越适应性和显著的通用性。这些突破使大面积模块的认证功率转换效率达到18.04%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信