Modulation of Dielectric Behavior in Ceramic-Based Materials for Integrated Electromagnetic Waves Absorption and Thermal Conduction

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiawei Luo, Ze Lv, Linping Zhang, Yi Zhong, Hong Xu, Zhiping Mao
{"title":"Modulation of Dielectric Behavior in Ceramic-Based Materials for Integrated Electromagnetic Waves Absorption and Thermal Conduction","authors":"Jiawei Luo, Ze Lv, Linping Zhang, Yi Zhong, Hong Xu, Zhiping Mao","doi":"10.1002/adfm.202420086","DOIUrl":null,"url":null,"abstract":"Multifunctional materials that muster electromagnetic waves absorption (EMA) and thermal conduction features are highly desirable in electronic packaging of advanced electronics. However, traditional carbon-based and ceramic-based materials often rely on semiempirical rules when preparing these bifunctional composites because incompatibility between dielectric behavior and thermal conductivity. Herein, two bifunctional materials (SiC@RGO/EP (SCGE) and Si<sub>3</sub>N<sub>4</sub>@RGO/EP (SNGE)) with different dielectric features are obtained by assembling 1D ceramics whiskers and 2D graphene sheets to construct 3D porous skeleton followed by epoxy (EP) encapsulation to understand this underlying relationship. Since semiconductor-type silicon carbide (SiC) ceramics enhance the conductivity and dielectric response of material, thereby significantly intensifying electromagnetic waves loss, the obtained SCGE material harvests remarkable minimal reflection loss values (RL<sub>min</sub>) of −85.92 dB at 2.07 mm, which outperform reported SiC-based EMA materials so far. Whereas SNGE material prepared by introducing insulator silicon nitride (Si<sub>3</sub>N<sub>4</sub>) ceramics only delivers thermal conductivity (0.86 W m<sup>−1</sup> K<sup>−1</sup>) close to that of SCGE (0.93 W m<sup>−1</sup> K<sup>−1</sup>), but EMA performance is dramatically reduced with RL<sub>min</sub> of −19.88 dB at 5 mm. The finding of this work offers new insights for modulating dielectric behavior of ceramic materials and carbon-based materials to achieve the integration of EMA and thermal conduction functions.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"83 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202420086","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multifunctional materials that muster electromagnetic waves absorption (EMA) and thermal conduction features are highly desirable in electronic packaging of advanced electronics. However, traditional carbon-based and ceramic-based materials often rely on semiempirical rules when preparing these bifunctional composites because incompatibility between dielectric behavior and thermal conductivity. Herein, two bifunctional materials (SiC@RGO/EP (SCGE) and Si3N4@RGO/EP (SNGE)) with different dielectric features are obtained by assembling 1D ceramics whiskers and 2D graphene sheets to construct 3D porous skeleton followed by epoxy (EP) encapsulation to understand this underlying relationship. Since semiconductor-type silicon carbide (SiC) ceramics enhance the conductivity and dielectric response of material, thereby significantly intensifying electromagnetic waves loss, the obtained SCGE material harvests remarkable minimal reflection loss values (RLmin) of −85.92 dB at 2.07 mm, which outperform reported SiC-based EMA materials so far. Whereas SNGE material prepared by introducing insulator silicon nitride (Si3N4) ceramics only delivers thermal conductivity (0.86 W m−1 K−1) close to that of SCGE (0.93 W m−1 K−1), but EMA performance is dramatically reduced with RLmin of −19.88 dB at 5 mm. The finding of this work offers new insights for modulating dielectric behavior of ceramic materials and carbon-based materials to achieve the integration of EMA and thermal conduction functions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信