High Stress Drop and Slow Rupture During the 2020 MW6.4 Intraplate Petrinja Earthquake, Croatia

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Iva Žilić, Mathieu Causse, Martin Vallée, Snježana Markušić
{"title":"High Stress Drop and Slow Rupture During the 2020 MW6.4 Intraplate Petrinja Earthquake, Croatia","authors":"Iva Žilić, Mathieu Causse, Martin Vallée, Snježana Markušić","doi":"10.1029/2024jb029107","DOIUrl":null,"url":null,"abstract":"Here we analyze the rupture process of the 29 December 2020 M<sub>W</sub>6.4 Petrinja earthquake (Croatia), the largest event instrumentally recorded in this area characterized by a moderate strain-rate intraplate setting. We use foreshocks and aftershocks, recorded at more than 80 broadband stations located 70–420 km from the earthquake, as empirical Green's functions (EGFs) to separate source effects from propagation and local site effects. First, we deconvolve the mainshock P-wave time windows from the EGFs in the frequency domain to obtain the corner frequency (<i>f</i><sub><i>c</i></sub>). Spectral analysis based on the Brune's source model reveals a large stress drop of 24 MPa. Next, by deconvolving the Love waves in the time domain, we calculate the Apparent Source Time Functions (ASTFs). We find that the average duration of the source is ∼5 s, with no significant directivity effects, indicating a bilateral rupture. To extract physical rupture parameters such as rupture velocity, slip distribution and rise time, we deploy two techniques: (a) Bayesian inversion and (b) backprojection onto isochrones of ASTFs. Both techniques show a low rupture velocity (40%–50% of the shear wave velocity) and a rupture length of less than 10 km, that is, much less than would typically be expected for a magnitude 6.4 earthquake. This apparent anticorrelation between stress drop and rupture velocity may be attributed to the complex and segmented fault system characteristic of immature intraplate settings.","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"27 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024jb029107","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Here we analyze the rupture process of the 29 December 2020 MW6.4 Petrinja earthquake (Croatia), the largest event instrumentally recorded in this area characterized by a moderate strain-rate intraplate setting. We use foreshocks and aftershocks, recorded at more than 80 broadband stations located 70–420 km from the earthquake, as empirical Green's functions (EGFs) to separate source effects from propagation and local site effects. First, we deconvolve the mainshock P-wave time windows from the EGFs in the frequency domain to obtain the corner frequency (fc). Spectral analysis based on the Brune's source model reveals a large stress drop of 24 MPa. Next, by deconvolving the Love waves in the time domain, we calculate the Apparent Source Time Functions (ASTFs). We find that the average duration of the source is ∼5 s, with no significant directivity effects, indicating a bilateral rupture. To extract physical rupture parameters such as rupture velocity, slip distribution and rise time, we deploy two techniques: (a) Bayesian inversion and (b) backprojection onto isochrones of ASTFs. Both techniques show a low rupture velocity (40%–50% of the shear wave velocity) and a rupture length of less than 10 km, that is, much less than would typically be expected for a magnitude 6.4 earthquake. This apparent anticorrelation between stress drop and rupture velocity may be attributed to the complex and segmented fault system characteristic of immature intraplate settings.
在此,我们分析了 2020 年 12 月 29 日 MW6.4 级 Petrinja 地震(克罗地亚)的破裂过程,这是该地区仪器记录到的最大地震,其特点是板内中等应变率环境。我们使用距离地震发生地 70-420 公里的 80 多个宽带台站记录的前震和余震作为经验格林函数(EGF),将震源效应与传播和局部场地效应分离开来。首先,我们在频域内对来自 EGF 的主震 P 波时间窗进行解卷积,以获得角频率 (fc)。基于 Brune 震源模型的频谱分析表明应力下降很大,达到 24 兆帕。接下来,通过对时域中的爱波进行解卷积,我们计算出了表观源时间函数 (ASTF)。我们发现,源的平均持续时间为 5 秒,没有明显的指向性效应,表明是双边破裂。为了提取断裂的物理参数,如断裂速度、滑移分布和上升时间,我们采用了两种技术:(a)贝叶斯反演;(b)反投影到 ASTF 的等时线上。这两种技术都显示了较低的断裂速度(剪切波速度的 40%-50%)和小于 10 千米的断裂长度,即远远小于 6.4 级地震的典型预期。应力下降与断裂速度之间的这种明显反相关关系可能是由于板内不成熟环境所特有的复杂、分段断层系统造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research: Solid Earth Earth and Planetary Sciences-Geophysics
CiteScore
7.50
自引率
15.40%
发文量
559
期刊介绍: The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology. JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields. JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信