Development of the Crystallization Process for Rivaroxaban–Oxalic Acid Cocrystal Preparation Using a Combination of Phase Diagrams and In Situ Measurements

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED
Erika Hriňová, Igor Čerňa, Eliška Zmeškalová, Luděk Ridvan, Miroslav Šoóš
{"title":"Development of the Crystallization Process for Rivaroxaban–Oxalic Acid Cocrystal Preparation Using a Combination of Phase Diagrams and In Situ Measurements","authors":"Erika Hriňová, Igor Čerňa, Eliška Zmeškalová, Luděk Ridvan, Miroslav Šoóš","doi":"10.1021/acs.oprd.4c00509","DOIUrl":null,"url":null,"abstract":"This study presents the development of the crystallization process for the rivaroxaban–oxalic acid cocrystal. The solvent screening was conducted by means of the crystallization of the cocrystal from a saturated solution of acetone, ethanol, isopropanol, acetonitrile, ethyl acetate, and ethyl formate. Two selected solvents, namely, ethyl formate and acetone, were subjected to ternary phase diagram construction in order to ascertain the system equilibrium and identify the boundaries for pure cocrystal crystallization. The crystallization process was subsequently examined through the utilization of an in situ Raman spectroscopy probe. It was observed that the rate of transformation decreased at higher temperatures, which is most probably due to lower saturation in terms of the cocrystal. The reaction mechanism was observed by an in situ imaging probe, showing that new crystals were growing directly from the solution instead of growing from the surface of existing crystals. These findings were employed in the development of a crystallization process for both solvents, resulting in enhanced time and cost efficiency. A notable difference in particle size was observed between solvents, with acetone producing larger crystals. Consequently, ethyl formate was selected as the optimal solvent for further scale-up of the process, given its favorable impact on dissolution enhancement.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"30 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00509","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the development of the crystallization process for the rivaroxaban–oxalic acid cocrystal. The solvent screening was conducted by means of the crystallization of the cocrystal from a saturated solution of acetone, ethanol, isopropanol, acetonitrile, ethyl acetate, and ethyl formate. Two selected solvents, namely, ethyl formate and acetone, were subjected to ternary phase diagram construction in order to ascertain the system equilibrium and identify the boundaries for pure cocrystal crystallization. The crystallization process was subsequently examined through the utilization of an in situ Raman spectroscopy probe. It was observed that the rate of transformation decreased at higher temperatures, which is most probably due to lower saturation in terms of the cocrystal. The reaction mechanism was observed by an in situ imaging probe, showing that new crystals were growing directly from the solution instead of growing from the surface of existing crystals. These findings were employed in the development of a crystallization process for both solvents, resulting in enhanced time and cost efficiency. A notable difference in particle size was observed between solvents, with acetone producing larger crystals. Consequently, ethyl formate was selected as the optimal solvent for further scale-up of the process, given its favorable impact on dissolution enhancement.

Abstract Image

用相图和原位测量相结合的方法研究利伐沙班-草酸共晶制备的结晶工艺
本研究介绍了利伐沙班-草酸共晶体结晶工艺的开发过程。通过从丙酮、乙醇、异丙醇、乙腈、乙酸乙酯和甲酸乙酯的饱和溶液中结晶出该共晶体,进行了溶剂筛选。对所选的两种溶剂,即甲酸乙酯和丙酮,进行了三元相图构建,以确定系统平衡并确定纯净共晶体的结晶边界。随后,利用原位拉曼光谱探针对结晶过程进行了检测。据观察,温度越高,转化率越低,这很可能是由于共晶体的饱和度较低。原位成像探针对反应机制进行了观察,结果表明,新晶体是直接从溶液中生长出来的,而不是从现有晶体表面生长出来的。这些发现被用于开发两种溶剂的结晶工艺,从而提高了时间和成本效率。两种溶剂的粒度差异明显,丙酮产生的晶体更大。因此,考虑到甲酸乙酯对溶解增强的有利影响,该工艺被选为进一步放大的最佳溶剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信