{"title":"Surface Modification of Polyvinylidene Fluoride Latex Nanoparticles through Chain Entanglement by Poly(meth)acrylate Monomer Swelling Seeded Emulsion Polymerization","authors":"Longben Huo, Hui Feng, Jiwei Cui, Ying Zhu, Lingyun Zhu, Xin Jin, Xinyuan Zhu","doi":"10.1021/acs.langmuir.4c04318","DOIUrl":null,"url":null,"abstract":"Polyvinylidene fluoride (PVDF) latex nanoparticles serve as a versatile platform for surface modification due to their role as precursors in PVDF manufacturing. However, the strong chemical stability and poor compatibility of PVDF present significant challenges for effective surface modification. To address this, we developed a method that facilitates surface modification through chain entanglement. By employing monomer swelling emulsion polymerization, poly(meth)acrylate (PA) monomers are incorporated into PVDF nanoparticles and subsequently polymerized. Rheological properties and transmission electron microscopy mapping confirmed the chain entanglement between PVDF and PA, indicating a successful integration. This method is efficient, straightforward, and highly adaptable, making it well-suited for large-scale industrial production.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"29 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04318","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polyvinylidene fluoride (PVDF) latex nanoparticles serve as a versatile platform for surface modification due to their role as precursors in PVDF manufacturing. However, the strong chemical stability and poor compatibility of PVDF present significant challenges for effective surface modification. To address this, we developed a method that facilitates surface modification through chain entanglement. By employing monomer swelling emulsion polymerization, poly(meth)acrylate (PA) monomers are incorporated into PVDF nanoparticles and subsequently polymerized. Rheological properties and transmission electron microscopy mapping confirmed the chain entanglement between PVDF and PA, indicating a successful integration. This method is efficient, straightforward, and highly adaptable, making it well-suited for large-scale industrial production.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).