{"title":"Versatile platforms of mussel-inspired agarose scaffold for cell cultured meat","authors":"Kaihao You, Lianghua Xie, Jiaxin Li, Qingying Liu, Lenan Zhuang, Wei Chen","doi":"10.1016/j.jare.2025.01.024","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Biomaterial scaffolds are critical for cell cultured meat production. polysaccharide scaffolds lack essential animal cell adhesion receptors, leading to significant challenges in cell proliferation and myogenic differentiation. Thus, enhancing cell adhesion and growth on polysaccharide scaffolds is strongly required to supply the gaps in cell-cultured meat production.<h3>Objectives</h3>This study aims to develop a multifunctional cell-responsive hydrogel scaffold for the <em>in vitro</em> production of myofibers and structured cell cultured meat through a “cell adhesion-proliferation-differentiation” strategy.<h3>Methods</h3>A polydopamine coating was applied to agarose hydrogel scaffolds using a dipping technique. The capability of scaffolds for myofiber preparation was assessed by evaluating cell adhesion, proliferation, and myogenic differentiation. Utilizing isolated porcine skeletal muscle satellite cells (PSMSCs), the feasibility of structured cell cultured pork tissue supported by agarose hydrogel film scaffolds was further investigated through three-dimensional imaging and scanning electron microscopy analysis. The physicochemical properties of the structured cell cultured pork tissue were evaluated through staining and texture analysis.<h3>Results</h3>The incorporation of a polydopamine coating facilitated a remarkable 100 % cell adhesion rate on agarose hydrogel scaffolds, which also demonstrated reusability. The agarose hydrogel scaffolds retained adequate mechanical properties, enabling the adhered cells to proliferate effectively and differentiate into myofiber. Moreover, isolated PSMSCs maintained growth potential on the agarose hydrogel scaffolds, thereby imparting the scaffolds with the ability to generate substantial quantities of multinucleated myofibers. Furthermore, we established a structured cell culture pork meat model, characterized by high-density myofibers and agarose hydrogel film scaffolds, which exhibited the texture and color typical of real pork.<h3>Conclusion</h3>The innovative agarose/polydopamine scaffold functions as a multifunctional platform for cell culture, offering novel avenues for the diversification and scalable production of cultured meat, and promising significant reductions in production costs for cell cultured meat.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"4 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.01.024","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Biomaterial scaffolds are critical for cell cultured meat production. polysaccharide scaffolds lack essential animal cell adhesion receptors, leading to significant challenges in cell proliferation and myogenic differentiation. Thus, enhancing cell adhesion and growth on polysaccharide scaffolds is strongly required to supply the gaps in cell-cultured meat production.
Objectives
This study aims to develop a multifunctional cell-responsive hydrogel scaffold for the in vitro production of myofibers and structured cell cultured meat through a “cell adhesion-proliferation-differentiation” strategy.
Methods
A polydopamine coating was applied to agarose hydrogel scaffolds using a dipping technique. The capability of scaffolds for myofiber preparation was assessed by evaluating cell adhesion, proliferation, and myogenic differentiation. Utilizing isolated porcine skeletal muscle satellite cells (PSMSCs), the feasibility of structured cell cultured pork tissue supported by agarose hydrogel film scaffolds was further investigated through three-dimensional imaging and scanning electron microscopy analysis. The physicochemical properties of the structured cell cultured pork tissue were evaluated through staining and texture analysis.
Results
The incorporation of a polydopamine coating facilitated a remarkable 100 % cell adhesion rate on agarose hydrogel scaffolds, which also demonstrated reusability. The agarose hydrogel scaffolds retained adequate mechanical properties, enabling the adhered cells to proliferate effectively and differentiate into myofiber. Moreover, isolated PSMSCs maintained growth potential on the agarose hydrogel scaffolds, thereby imparting the scaffolds with the ability to generate substantial quantities of multinucleated myofibers. Furthermore, we established a structured cell culture pork meat model, characterized by high-density myofibers and agarose hydrogel film scaffolds, which exhibited the texture and color typical of real pork.
Conclusion
The innovative agarose/polydopamine scaffold functions as a multifunctional platform for cell culture, offering novel avenues for the diversification and scalable production of cultured meat, and promising significant reductions in production costs for cell cultured meat.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.