Sarthak Chandra, Sugandha Sharma, Rishidev Chaudhuri, Ila Fiete
{"title":"Episodic and associative memory from spatial scaffolds in the hippocampus","authors":"Sarthak Chandra, Sugandha Sharma, Rishidev Chaudhuri, Ila Fiete","doi":"10.1038/s41586-024-08392-y","DOIUrl":null,"url":null,"abstract":"<p>Hippocampal circuits in the brain enable two distinct cognitive functions: the construction of spatial maps for navigation, and the storage of sequential episodic memories<sup>1,2,3,4,5</sup>. Although there have been advances in modelling spatial representations in the hippocampus<sup>6,7,8,9,10</sup>, we lack good models of its role in episodic memory. Here we present a neocortical–entorhinal–hippocampal network model that implements a high-capacity general associative memory, spatial memory and episodic memory. By factoring content storage from the dynamics of generating error-correcting stable states, the circuit (which we call vector hippocampal scaffolded heteroassociative memory (Vector-HaSH)) avoids the memory cliff of prior memory models<sup>11,12</sup>, and instead exhibits a graceful trade-off between number of stored items and recall detail. A pre-structured internal scaffold based on grid cell states is essential for constructing even non-spatial episodic memory: it enables high-capacity sequence memorization by abstracting the chaining problem into one of learning low-dimensional transitions. Vector-HaSH reproduces several hippocampal experiments on spatial mapping and context-based representations, and provides a circuit model of the ‘memory palaces’ used by memory athletes<sup>13</sup>. Thus, this work provides a unified understanding of the spatial mapping and associative and episodic memory roles of the hippocampus.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"37 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08392-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hippocampal circuits in the brain enable two distinct cognitive functions: the construction of spatial maps for navigation, and the storage of sequential episodic memories1,2,3,4,5. Although there have been advances in modelling spatial representations in the hippocampus6,7,8,9,10, we lack good models of its role in episodic memory. Here we present a neocortical–entorhinal–hippocampal network model that implements a high-capacity general associative memory, spatial memory and episodic memory. By factoring content storage from the dynamics of generating error-correcting stable states, the circuit (which we call vector hippocampal scaffolded heteroassociative memory (Vector-HaSH)) avoids the memory cliff of prior memory models11,12, and instead exhibits a graceful trade-off between number of stored items and recall detail. A pre-structured internal scaffold based on grid cell states is essential for constructing even non-spatial episodic memory: it enables high-capacity sequence memorization by abstracting the chaining problem into one of learning low-dimensional transitions. Vector-HaSH reproduces several hippocampal experiments on spatial mapping and context-based representations, and provides a circuit model of the ‘memory palaces’ used by memory athletes13. Thus, this work provides a unified understanding of the spatial mapping and associative and episodic memory roles of the hippocampus.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.