Effects of Relative Humidity on Time-Resolved Molecular Characterization of Secondary Organic Aerosols from the OH-Initiated Oxidation of Cresol in the Presence of NOx

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Cecilie Carstens, David M. Bell, Félix Sari Doré, Jens Top, Clément Dubois, Yanjun Zhang, Sébastien Perrier, Imad El Haddad, Matthieu Riva
{"title":"Effects of Relative Humidity on Time-Resolved Molecular Characterization of Secondary Organic Aerosols from the OH-Initiated Oxidation of Cresol in the Presence of NOx","authors":"Cecilie Carstens, David M. Bell, Félix Sari Doré, Jens Top, Clément Dubois, Yanjun Zhang, Sébastien Perrier, Imad El Haddad, Matthieu Riva","doi":"10.1021/acs.est.4c08215","DOIUrl":null,"url":null,"abstract":"While biomass burning (BB) is the largest source of fine particles in the atmosphere, the influence of relative humidity (RH) and photochemistry on BB secondary organic aerosol (BB-SOA) formation and aging remains poorly constrained. These effects need to be addressed to better capture and comprehend the evolution of BB-SOA in the atmosphere. Cresol (C<sub>7</sub>H<sub>8</sub>O) is used as a BB proxy to investigate these effects. It is emitted directly from BB and has been identified as a significant SOA precursor from residential wood-burning emissions. The gas- and particle-phase signal intensities are investigated using online mass spectrometers. An increase in the SOA mass yield of 7% is observed when the RH rises from 0.5–20 to 70–87%. At elevated RH, a significant increase in the formation of nitrogen-containing compounds is observed due to particle-phase processes. This is linked to a net decrease in the SOA viscosity, enabling these compounds to be formed to a greater extent at elevated RH in the presence of nitrogen oxides. These results highlight the importance of the particle water content for the molecular formation and aging of BB-SOA compounds.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"95 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08215","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

While biomass burning (BB) is the largest source of fine particles in the atmosphere, the influence of relative humidity (RH) and photochemistry on BB secondary organic aerosol (BB-SOA) formation and aging remains poorly constrained. These effects need to be addressed to better capture and comprehend the evolution of BB-SOA in the atmosphere. Cresol (C7H8O) is used as a BB proxy to investigate these effects. It is emitted directly from BB and has been identified as a significant SOA precursor from residential wood-burning emissions. The gas- and particle-phase signal intensities are investigated using online mass spectrometers. An increase in the SOA mass yield of 7% is observed when the RH rises from 0.5–20 to 70–87%. At elevated RH, a significant increase in the formation of nitrogen-containing compounds is observed due to particle-phase processes. This is linked to a net decrease in the SOA viscosity, enabling these compounds to be formed to a greater extent at elevated RH in the presence of nitrogen oxides. These results highlight the importance of the particle water content for the molecular formation and aging of BB-SOA compounds.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信