Cyrielle Petibon, Mathieu Catala, Danna Morales, Shanker Shyam Panchapakesan, Peter J Unrau, Sherif Abou Elela
{"title":"Transcription factors induce differential splicing of duplicated ribosomal protein genes during meiosis","authors":"Cyrielle Petibon, Mathieu Catala, Danna Morales, Shanker Shyam Panchapakesan, Peter J Unrau, Sherif Abou Elela","doi":"10.1093/nar/gkae1321","DOIUrl":null,"url":null,"abstract":"In baker’s yeast, genes encoding ribosomal proteins often exist as duplicate pairs, typically with one ‘major’ paralog highly expressed and a ‘minor’ less expressed paralog that undergoes controlled expression through reduced splicing efficiency. In this study, we investigate the regulatory mechanisms controlling splicing of the minor paralog of the uS4 protein gene (RPS9A), demonstrating that its splicing is repressed during vegetative growth but upregulated during meiosis. This differential splicing of RPS9A is mediated by two transcription factors, Rim101 and Taf14. Deletion of either RIM101 or TAF14 not only induces the splicing and expression of RPS9A with little effect on the major paralog RPS9B, but also differentially alters the splicing of reporter constructs containing only the RPS9 introns. Both Rim101 and Taf14 co-immunoprecipitate with the chromatin and RNA of the RPS9 genes, indicating that these transcription factors may affect splicing co-transcriptionally. Deletion of the RPS9A intron, RIM101 or TAF14 dysregulates RPS9A expression, impairing the timely expression of RPS9 during meiosis. Complete deletion of RPS9A impairs the expression pattern of meiotic genes and inhibits sporulation in yeast. These findings suggest a regulatory strategy whereby transcription factors modulate the splicing of duplicated ribosomal protein genes to fine-tune their expression in different cellular states.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"7 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1321","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In baker’s yeast, genes encoding ribosomal proteins often exist as duplicate pairs, typically with one ‘major’ paralog highly expressed and a ‘minor’ less expressed paralog that undergoes controlled expression through reduced splicing efficiency. In this study, we investigate the regulatory mechanisms controlling splicing of the minor paralog of the uS4 protein gene (RPS9A), demonstrating that its splicing is repressed during vegetative growth but upregulated during meiosis. This differential splicing of RPS9A is mediated by two transcription factors, Rim101 and Taf14. Deletion of either RIM101 or TAF14 not only induces the splicing and expression of RPS9A with little effect on the major paralog RPS9B, but also differentially alters the splicing of reporter constructs containing only the RPS9 introns. Both Rim101 and Taf14 co-immunoprecipitate with the chromatin and RNA of the RPS9 genes, indicating that these transcription factors may affect splicing co-transcriptionally. Deletion of the RPS9A intron, RIM101 or TAF14 dysregulates RPS9A expression, impairing the timely expression of RPS9 during meiosis. Complete deletion of RPS9A impairs the expression pattern of meiotic genes and inhibits sporulation in yeast. These findings suggest a regulatory strategy whereby transcription factors modulate the splicing of duplicated ribosomal protein genes to fine-tune their expression in different cellular states.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.