{"title":"Frequency-bin-encoded entanglement-based quantum key distribution in a reconfigurable frequency-multiplexed network","authors":"Anahita Khodadad Kashi, Michael Kues","doi":"10.1038/s41377-024-01696-8","DOIUrl":null,"url":null,"abstract":"<p>Large-scale quantum networks require dynamic and resource-efficient solutions to reduce system complexity with maintained security and performance to support growing number of users over large distances. Current encoding schemes including time-bin, polarization, and orbital angular momentum, suffer from the lack of reconfigurability and thus scalability issues. Here, we demonstrate the first-time implementation of frequency-bin-encoded entanglement-based quantum key distribution and a reconfigurable distribution of entanglement using frequency-bin encoding. Specifically, we demonstrate a novel scalable frequency-bin basis analyzer module that allows for a passive random basis selection as a crucial step in quantum protocols, and importantly equips each user with a single detector rather than four detectors. This minimizes massively the resource overhead, reduces the dark count contribution, vulnerability to detector side-channel attacks, and the detector imbalance, hence providing an enhanced security. Our approach offers an adaptive frequency-multiplexing capability to increase the number of channels without hardware overhead, enabling increased secret key rate and reconfigurable multi-user operations. In perspective, our approach enables dynamic resource-minimized quantum key distribution among multiple users across diverse network topologies, and facilitates scalability to large-scale quantum networks.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"75 3 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01696-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale quantum networks require dynamic and resource-efficient solutions to reduce system complexity with maintained security and performance to support growing number of users over large distances. Current encoding schemes including time-bin, polarization, and orbital angular momentum, suffer from the lack of reconfigurability and thus scalability issues. Here, we demonstrate the first-time implementation of frequency-bin-encoded entanglement-based quantum key distribution and a reconfigurable distribution of entanglement using frequency-bin encoding. Specifically, we demonstrate a novel scalable frequency-bin basis analyzer module that allows for a passive random basis selection as a crucial step in quantum protocols, and importantly equips each user with a single detector rather than four detectors. This minimizes massively the resource overhead, reduces the dark count contribution, vulnerability to detector side-channel attacks, and the detector imbalance, hence providing an enhanced security. Our approach offers an adaptive frequency-multiplexing capability to increase the number of channels without hardware overhead, enabling increased secret key rate and reconfigurable multi-user operations. In perspective, our approach enables dynamic resource-minimized quantum key distribution among multiple users across diverse network topologies, and facilitates scalability to large-scale quantum networks.