Realizing low voltage-driven bright and stable quantum dot light-emitting diodes through energy landscape flattening

IF 20.6 Q1 OPTICS
Yiting Liu, Yingying Sun, Xiaohan Yan, Bo Li, Lei Wang, Jianshun Li, Jiahui Sun, Yaqi Guo, Weipeng Liu, Binbin Hu, Qingli Lin, Fengjia Fan, Huaibin Shen
{"title":"Realizing low voltage-driven bright and stable quantum dot light-emitting diodes through energy landscape flattening","authors":"Yiting Liu, Yingying Sun, Xiaohan Yan, Bo Li, Lei Wang, Jianshun Li, Jiahui Sun, Yaqi Guo, Weipeng Liu, Binbin Hu, Qingli Lin, Fengjia Fan, Huaibin Shen","doi":"10.1038/s41377-024-01727-4","DOIUrl":null,"url":null,"abstract":"<p>Solution-processed quantum dot light-emitting diodes (QLEDs) hold great potential as competitive candidates for display and lighting applications. However, the serious energy disorder between the quantum dots (QDs) and hole transport layer (HTL) makes it challenging to achieve high-performance devices at lower voltage ranges. Here, we introduce “giant” fully alloy CdZnSe/ZnSeS core/shell QDs (size ~ 19 nm) as the emitting layer to build high-efficient and stable QLEDs. The synthesized CdZnSe-based QDs reveal a decreased ground-state band splitting, shallow valence band maximum, and improved quasi-Fermi level splitting, which effectively flatten the energy landscape between the QD layer and hole transport layer. The higher electron concentration and accelerated hole injection significantly promote the carrier radiative recombination dynamics. Consequently, CdZnSe-based device exhibits a high power conversion efficiency (PCE) of 27.3% and an ultra-low efficiency roll-off, with a high external quantum efficiency (EQE) exceeding 25% over a wide range of low driving voltages (1.8-3.0 V) and low heat generation. The record-high luminance levels of 1,400 and 8,600 cd m<sup>-2</sup> are achieved at bandgap voltages of 100% and 120%, respectively. Meanwhile, These LEDs show an unprecedented operation lifetime T<sub>95</sub> (time for the luminance to decrease to 95%) of 72,968 h at 1,000 cd m<sup>-2</sup>. Our work points to a novel path to flatten energy landscape at the QD-related interface for solution-processed photoelectronic devices.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"49 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01727-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Solution-processed quantum dot light-emitting diodes (QLEDs) hold great potential as competitive candidates for display and lighting applications. However, the serious energy disorder between the quantum dots (QDs) and hole transport layer (HTL) makes it challenging to achieve high-performance devices at lower voltage ranges. Here, we introduce “giant” fully alloy CdZnSe/ZnSeS core/shell QDs (size ~ 19 nm) as the emitting layer to build high-efficient and stable QLEDs. The synthesized CdZnSe-based QDs reveal a decreased ground-state band splitting, shallow valence band maximum, and improved quasi-Fermi level splitting, which effectively flatten the energy landscape between the QD layer and hole transport layer. The higher electron concentration and accelerated hole injection significantly promote the carrier radiative recombination dynamics. Consequently, CdZnSe-based device exhibits a high power conversion efficiency (PCE) of 27.3% and an ultra-low efficiency roll-off, with a high external quantum efficiency (EQE) exceeding 25% over a wide range of low driving voltages (1.8-3.0 V) and low heat generation. The record-high luminance levels of 1,400 and 8,600 cd m-2 are achieved at bandgap voltages of 100% and 120%, respectively. Meanwhile, These LEDs show an unprecedented operation lifetime T95 (time for the luminance to decrease to 95%) of 72,968 h at 1,000 cd m-2. Our work points to a novel path to flatten energy landscape at the QD-related interface for solution-processed photoelectronic devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信