Victor Kärcher, Tobias Reiker, Pedro F.G.M. da Costa, Andrea S.S. de Camargo, Helmut Zacharias
{"title":"Quantum control in size selected semiconductor quantum dot thin films","authors":"Victor Kärcher, Tobias Reiker, Pedro F.G.M. da Costa, Andrea S.S. de Camargo, Helmut Zacharias","doi":"10.1515/nanoph-2024-0529","DOIUrl":null,"url":null,"abstract":"We introduce a novel technique for coherent control that employs resonant internally generated fields in CdTe quantum dot (QD) thin films at the <jats:italic>L</jats:italic>-point. The bulk band gap of CdTe at the <jats:italic>L</jats:italic>-point amounts to 3.6 eV, with the transition marked by strong Coulomb coupling. Third harmonic generation (<jats:italic>λ</jats:italic> <jats:sub>3</jats:sub> = 343 nm, <jats:italic>hν</jats:italic> = 3.61 eV) for a fundamental wavelength of <jats:italic>λ</jats:italic> <jats:sub>1</jats:sub> = 1,030 nm is used to control quantum interference of three-photon resonant paths between the valence and conduction bands. Different thicknesses of the CdTe QDs are used to manipulate the phase relationship between the external fundamental and the internally generated third harmonic, resulting in either suppression or strong enhancement of the resonant third harmonic, while the nonresonant components remain nearly constant. This development could pave the way for new quantum interference–based applications in ultrafast switching of nanophotonic devices.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"53 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0529","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a novel technique for coherent control that employs resonant internally generated fields in CdTe quantum dot (QD) thin films at the L-point. The bulk band gap of CdTe at the L-point amounts to 3.6 eV, with the transition marked by strong Coulomb coupling. Third harmonic generation (λ3 = 343 nm, hν = 3.61 eV) for a fundamental wavelength of λ1 = 1,030 nm is used to control quantum interference of three-photon resonant paths between the valence and conduction bands. Different thicknesses of the CdTe QDs are used to manipulate the phase relationship between the external fundamental and the internally generated third harmonic, resulting in either suppression or strong enhancement of the resonant third harmonic, while the nonresonant components remain nearly constant. This development could pave the way for new quantum interference–based applications in ultrafast switching of nanophotonic devices.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.