Feng Xie, Xiaoxue Zhou, Yu Ran, Ran Li, Jing Zou, Shiyun Wan, Peng Su, Xuli Meng, Haiyan Yan, Huasong Lu, Heng Ru, Hai Hu, Zhengwei Mao, Bing Yang, Fangfang Zhou, Long Zhang
{"title":"Targeting FOXM1 condensates reduces breast tumour growth and metastasis","authors":"Feng Xie, Xiaoxue Zhou, Yu Ran, Ran Li, Jing Zou, Shiyun Wan, Peng Su, Xuli Meng, Haiyan Yan, Huasong Lu, Heng Ru, Hai Hu, Zhengwei Mao, Bing Yang, Fangfang Zhou, Long Zhang","doi":"10.1038/s41586-024-08421-w","DOIUrl":null,"url":null,"abstract":"Identifying phase-separated structures remains challenging, and effective intervention methods are currently lacking1. Here we screened for phase-separated proteins in breast tumour cells and identified forkhead (FKH) box protein M1 (FOXM1) as the most prominent candidate. Oncogenic FOXM1 underwent liquid–liquid phase separation (LLPS) with FKH consensus DNA element, and compartmentalized the transcription apparatus in the nucleus, thereby sustaining chromatin accessibility and super-enhancer landscapes crucial for tumour metastatic outgrowth. Screening an epigenetics compound library identified AMPK agonists as suppressors of FOXM1 condensation. AMPK phosphorylated FOXM1 in the intrinsically disordered region (IDR), perturbing condensates, reducing oncogenic transcription, accumulating double-stranded DNA to stimulate innate immune responses, and endowing discrete FOXM1 with the ability to activate immunogenicity-related gene expressions. By developing a genetic code-expansion orthogonal system, we demonstrated that a phosphoryl moiety at a specific IDR1 site causes electrostatic repulsion, thereby abolishing FOXM1 LLPS and aggregation. A peptide targeting IDR1 and carrying the AMPK-phosphorylated residue was designed to disrupt FOXM1 LLPS and was shown to inhibit tumour malignancy, rescue tumour immunogenicity and improve tumour immunotherapy. Together, these findings provide novel and in-depth insights on function and mechanism of FOXM1 and develop methodologies that hold promising implications in clinics. The transcription factor FOXM1 forms functional condensates, the formation of which can be targeted with a specific peptide to suppress breast cancer growth and metastasis.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"638 8052","pages":"1112-1121"},"PeriodicalIF":48.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08421-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying phase-separated structures remains challenging, and effective intervention methods are currently lacking1. Here we screened for phase-separated proteins in breast tumour cells and identified forkhead (FKH) box protein M1 (FOXM1) as the most prominent candidate. Oncogenic FOXM1 underwent liquid–liquid phase separation (LLPS) with FKH consensus DNA element, and compartmentalized the transcription apparatus in the nucleus, thereby sustaining chromatin accessibility and super-enhancer landscapes crucial for tumour metastatic outgrowth. Screening an epigenetics compound library identified AMPK agonists as suppressors of FOXM1 condensation. AMPK phosphorylated FOXM1 in the intrinsically disordered region (IDR), perturbing condensates, reducing oncogenic transcription, accumulating double-stranded DNA to stimulate innate immune responses, and endowing discrete FOXM1 with the ability to activate immunogenicity-related gene expressions. By developing a genetic code-expansion orthogonal system, we demonstrated that a phosphoryl moiety at a specific IDR1 site causes electrostatic repulsion, thereby abolishing FOXM1 LLPS and aggregation. A peptide targeting IDR1 and carrying the AMPK-phosphorylated residue was designed to disrupt FOXM1 LLPS and was shown to inhibit tumour malignancy, rescue tumour immunogenicity and improve tumour immunotherapy. Together, these findings provide novel and in-depth insights on function and mechanism of FOXM1 and develop methodologies that hold promising implications in clinics. The transcription factor FOXM1 forms functional condensates, the formation of which can be targeted with a specific peptide to suppress breast cancer growth and metastasis.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.