A generative model for inorganic materials design

IF 48.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-01-16 DOI:10.1038/s41586-025-08628-5
Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Zilong Wang, Aliaksandra Shysheya, Jonathan Crabbé, Shoko Ueda, Roberto Sordillo, Lixin Sun, Jake Smith, Bichlien Nguyen, Hannes Schulz, Sarah Lewis, Chin-Wei Huang, Ziheng Lu, Yichi Zhou, Han Yang, Hongxia Hao, Jielan Li, Chunlei Yang, Wenjie Li, Ryota Tomioka, Tian Xie
{"title":"A generative model for inorganic materials design","authors":"Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Zilong Wang, Aliaksandra Shysheya, Jonathan Crabbé, Shoko Ueda, Roberto Sordillo, Lixin Sun, Jake Smith, Bichlien Nguyen, Hannes Schulz, Sarah Lewis, Chin-Wei Huang, Ziheng Lu, Yichi Zhou, Han Yang, Hongxia Hao, Jielan Li, Chunlei Yang, Wenjie Li, Ryota Tomioka, Tian Xie","doi":"10.1038/s41586-025-08628-5","DOIUrl":null,"url":null,"abstract":"The design of functional materials with desired properties is essential in driving technological advances in areas such as energy storage, catalysis and carbon capture1–3. Generative models accelerate materials design by directly generating new materials given desired property constraints, but current methods have a low success rate in proposing stable crystals or can satisfy only a limited set of property constraints4–11. Here we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. Compared with previous generative models4,12, structures produced by MatterGen are more than twice as likely to be new and stable, and more than ten times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, new materials with desired chemistry, symmetry and mechanical, electronic and magnetic properties. As a proof of concept, we synthesize one of the generated structures and measure its property value to be within 20% of our target. We believe that the quality of generated materials and the breadth of abilities of MatterGen represent an important advancement towards creating a foundational generative model for materials design. MatterGen is a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"639 8055","pages":"624-632"},"PeriodicalIF":48.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-025-08628-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-08628-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The design of functional materials with desired properties is essential in driving technological advances in areas such as energy storage, catalysis and carbon capture1–3. Generative models accelerate materials design by directly generating new materials given desired property constraints, but current methods have a low success rate in proposing stable crystals or can satisfy only a limited set of property constraints4–11. Here we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. Compared with previous generative models4,12, structures produced by MatterGen are more than twice as likely to be new and stable, and more than ten times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, new materials with desired chemistry, symmetry and mechanical, electronic and magnetic properties. As a proof of concept, we synthesize one of the generated structures and measure its property value to be within 20% of our target. We believe that the quality of generated materials and the breadth of abilities of MatterGen represent an important advancement towards creating a foundational generative model for materials design. MatterGen is a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints.

Abstract Image

无机材料设计的生成模型
设计具有理想性能的功能材料对于推动储能、催化和碳捕获等领域的技术进步至关重要。生成模型为材料设计提供了一个新的范例,通过给定所需的性能约束直接生成新材料,但目前的方法在提出稳定晶体方面成功率低,或者只能满足有限的一组性能约束4−11。在这里,我们提出了MatterGen,这是一个模型,可以在元素周期表中生成稳定、多样化的无机材料,并可以进一步微调,以引导生成更广泛的属性约束。与之前的生成模型4,12相比,MatterGen生成的结构新颖和稳定的可能性是原来的两倍多,距离局部能量最小值的距离是原来的10倍多。经过微调,MatterGen成功地生产出稳定的新型材料,具有理想的化学、对称性、机械、电子和磁性能。作为概念验证,我们合成了一个生成的结构,并测量了其属性值在我们目标的20%以内。我们相信,生成材料的质量和MatterGen能力的广度代表了为材料设计创建基础生成模型的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信