W. R. Geng, Y. L. Zhu, M. X. Zhu, Y. L. Tang, H. J. Zhao, C. H. Lei, Y. J. Wang, J. H. Wang, R. J. Jiang, S. Z. Liu, X. Y. San, Y. P. Feng, M. J. Zou, X. L. Ma
{"title":"Dipolar wavevector interference induces a polar skyrmion lattice in strained BiFeO3 films","authors":"W. R. Geng, Y. L. Zhu, M. X. Zhu, Y. L. Tang, H. J. Zhao, C. H. Lei, Y. J. Wang, J. H. Wang, R. J. Jiang, S. Z. Liu, X. Y. San, Y. P. Feng, M. J. Zou, X. L. Ma","doi":"10.1038/s41565-024-01845-5","DOIUrl":null,"url":null,"abstract":"<p>Skyrmions can form regular arrangements, so-called skyrmion crystals (SkXs). A mode with multiple wavevectors <b><i>q</i></b> then describes the arrangement. While magnetic SkXs, which can emerge in the presence of Dzyaloshinskii–Moriya interaction, are well established, polar skyrmion lattices are still elusive. Here we report the observation of polar SkXs with a well-defined double-<b><i>q</i></b> state in ultrathin BiFeO<sub>3</sub> films on LaAlO<sub>3</sub>. The compressive strain induced by the LaAlO<sub>3</sub> substrate yields a dipolar topological texture with a periodic arrangement of skyrmions. The square-like superstructure with a lattice constant of 2.68 nm features a periodic modulation of polarization fields and topological charge density. The film furthermore exhibits an enhanced electromechanical response with an increased converse piezoelectric coefficient (<i>d</i><sub>33</sub>) compared with SkX-free films. Transmission electron microscopy experiments in combination with phase-field simulations indicate that the dipole skyrmion texture results from the interference of two orthogonal single-<b><i>q</i></b> dipole patterns. We anticipate that the interference of multiple wavevectors may lead to a diversity of topological crystals with a variety of symmetries and lattice constants.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"15 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01845-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Skyrmions can form regular arrangements, so-called skyrmion crystals (SkXs). A mode with multiple wavevectors q then describes the arrangement. While magnetic SkXs, which can emerge in the presence of Dzyaloshinskii–Moriya interaction, are well established, polar skyrmion lattices are still elusive. Here we report the observation of polar SkXs with a well-defined double-q state in ultrathin BiFeO3 films on LaAlO3. The compressive strain induced by the LaAlO3 substrate yields a dipolar topological texture with a periodic arrangement of skyrmions. The square-like superstructure with a lattice constant of 2.68 nm features a periodic modulation of polarization fields and topological charge density. The film furthermore exhibits an enhanced electromechanical response with an increased converse piezoelectric coefficient (d33) compared with SkX-free films. Transmission electron microscopy experiments in combination with phase-field simulations indicate that the dipole skyrmion texture results from the interference of two orthogonal single-q dipole patterns. We anticipate that the interference of multiple wavevectors may lead to a diversity of topological crystals with a variety of symmetries and lattice constants.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.