Correction to “Homochiral Ferromagnetic Coupling Dy2 Single-Molecule Magnets with Strong Magneto-Optical Faraday Effects at Room Temperature”

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Cai-Ming Liu, Rong Sun, Bing-Wu Wang, Fan Wu, Xiang Hao, Zhen Shen
{"title":"Correction to “Homochiral Ferromagnetic Coupling Dy2 Single-Molecule Magnets with Strong Magneto-Optical Faraday Effects at Room Temperature”","authors":"Cai-Ming Liu, Rong Sun, Bing-Wu Wang, Fan Wu, Xiang Hao, Zhen Shen","doi":"10.1021/acs.inorgchem.4c05545","DOIUrl":null,"url":null,"abstract":"Page 12045. Because of the bias in the understanding of the formula <i>g</i><sub>MCD</sub> = 2(ε<sub>+</sub>(<i>B</i>) – ε<sub>+</sub>(−<i>B</i>))/(ε<sub>+</sub>(<i>B</i>) + ε<sub>+</sub>(−<i>B</i>)), the <i>g</i><sub>MCD</sub> values in the original paper were calculated with <i>g</i><sub>MCD</sub> = 2{Δε(<i>B+</i>) – Δε(<i>B–</i>)}/{Δε(<i>B+</i>) + Δε(<i>B–</i>)} = {Δε(<i>B+</i>) – Δε(<i>B–</i>)}/Δε in Figure 7(top), i.e., <i>g</i><sub>MCD</sub> = 2Δε(MCD)/Δε(CD), which may reflect the degree to which the Faraday effect of chiral compounds varies with the direction of the magnetic field. This formula is different from the common <i>g</i><sub>MCD</sub> = Δε(MCD)/ε. The paragraph “The anisotropy factor of MCD, <i>g</i><sub>MCD</sub> = 2(ε<sub>+</sub>(<i>B</i>) – ε<sub>+</sub>(−<i>B</i>))/(ε<sub>+</sub>(<i>B</i>) + ε<sub>+</sub>(−<i>B</i>)),<sup>92</sup> was calculated for both <span>l</span>-<b>1</b> and <span>d</span>-<b>1</b> (Figure 8), which have a roughly mirror symmetry in the 250–350 nm range. Notably, the values of <i>g</i><sub>max(MCD)</sub> for <span>l</span>-<b>1</b> and <span>d</span>-<b>1</b> at room temperature are 1.27 and −1.72 T<sup>–1</sup>, respectively, whose absolute values are remarkably large values, much larger than those of 3d–4f complexes [Co<sub>2</sub>Ln[(<i>R</i>)/(<i>S</i>)-L]<sub>4</sub>]·Cl<sub>5</sub>·2H<sub>2</sub>O·MeOH·EtOH (Ln = Gd, Dy) (0.02 T<sup>–1</sup>)<sup>45</sup> and 4f complexes (≤0.24 T<sup>–1</sup>).<sup>93</sup> The large absolute value of <i>g</i><sub>max(MCD)</sub> for the chiral Dy<sub>2</sub> enantiomers <span>d</span>-<b>1</b> and <span>l</span>-<b>1</b> indicates a very strong magneto-optical Faraday effect. Recent studies have shown that, for lanthanide (III) compounds, the strength of MCD can be enhanced by increasing the magnetic dipole moment of the ground states and the excited states. <sup>93</sup> The Dy(III) ion itself has a large magnetic moment (<i>S</i> = 7/2), and the ferromagnetic interaction between the two Dy(III) ions corresponds to large magnetic dipole moments of the ground state and the excited states; therefore, a strong magneto-optical Faraday effect for <span>d</span>-<b>1</b> and <span>l</span>-<b>1</b> appears as expected. This implies that they have potential application prospects in magneto-optical devices. By the way, because <i>g</i><sub>MChD</sub> and <i>g</i><sub>MCD</sub> are directly proportional,<sup>37</sup> it is possible for these chiral Dy<sub>2</sub> SMMs to have large <i>g</i><sub>MChD</sub> values.<sup>45</sup>” should be corrected as follows: Replacing Δε(CD) in <i>g</i><sub>(CD)</sub> = Δε(CD)/ε with Δε(MCD) gives <i>g</i><sub>(MCD)</sub> = Δε(MCD)/ε,<sup>92,93</sup> i.e., <i>g</i><sub>(MCD)</sub> = {Δε(<i>B</i>+) – Δε(<i>B</i>−)}/(2ε); the <i>g</i><sub>(MCD)</sub> values of <span>d</span>-<b>1</b> and <span>l</span>-<b>1</b> are calculated to be −5.68 × 10<sup>–5</sup> and −5.53 × 10<sup>–5</sup> (after being normalized to 1.0 T) at 303 nm, respectively, the |<i>g</i><sub>(MCD)</sub>| values are small because their corresponding <i>g</i><sub>(CD)</sub> values are small too (2.79 × 10<sup>–4</sup> and <i>–</i>2.65 × 10<sup>–4</sup>, respectively). For chiral molecular materials, the Δε(MCD)/Δε(CD) value means the increment percentage of the CD signal intensity in the presence of a magnetic field relative to the absence of a magnetic field. Therefore, such values at the CD signal peaks (in order to ensure that the measurement error is minimized) may reflect changes in the Faraday effect of chiral compounds.<sup>94</sup> The Δε(MCD)/Δε(CD) values at 1.6 T are −32.5% for <span>d</span>-<b>1</b> and 33.6% for <span>l</span>-<b>1</b> at 303 nm, suggesting that <span>d</span>-<b>1</b> and <span>l</span>-<b>1</b> have a strong magneto-optical Faraday effect. However, the |Δε(MCD)/Δε(CD)| values of <span>d</span>-<b>1</b> and <span>l</span>-<b>1</b> at 303 nm are smaller than those of <i>R</i>/<i>S</i>-[Mn<sub>10</sub>Dy<sub>6</sub>] (70% at 1.6 T) at 281 nm.<sup>94</sup> Figure 8 should be deleted accordingly. Page 12048. Reference 94: Wang, X.; Du, M.-H.; Xu, H.; Long, L.-S.; Kong, X.-J.; Zheng, L.-S. <i>Inorg. Chem.</i> <b>2021</b>, <i>60</i>, 5925. These corrections do not affect the overall findings and conclusions of the paper. We apologize for any confusion these errors may cause and appreciate the opportunity to correct them. We appreciate the understanding of the editors and readers. This article has not yet been cited by other publications.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"3 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c05545","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Page 12045. Because of the bias in the understanding of the formula gMCD = 2(ε+(B) – ε+(−B))/(ε+(B) + ε+(−B)), the gMCD values in the original paper were calculated with gMCD = 2{Δε(B+) – Δε(B–)}/{Δε(B+) + Δε(B–)} = {Δε(B+) – Δε(B–)}/Δε in Figure 7(top), i.e., gMCD = 2Δε(MCD)/Δε(CD), which may reflect the degree to which the Faraday effect of chiral compounds varies with the direction of the magnetic field. This formula is different from the common gMCD = Δε(MCD)/ε. The paragraph “The anisotropy factor of MCD, gMCD = 2(ε+(B) – ε+(−B))/(ε+(B) + ε+(−B)),92 was calculated for both l-1 and d-1 (Figure 8), which have a roughly mirror symmetry in the 250–350 nm range. Notably, the values of gmax(MCD) for l-1 and d-1 at room temperature are 1.27 and −1.72 T–1, respectively, whose absolute values are remarkably large values, much larger than those of 3d–4f complexes [Co2Ln[(R)/(S)-L]4]·Cl5·2H2O·MeOH·EtOH (Ln = Gd, Dy) (0.02 T–1)45 and 4f complexes (≤0.24 T–1).93 The large absolute value of gmax(MCD) for the chiral Dy2 enantiomers d-1 and l-1 indicates a very strong magneto-optical Faraday effect. Recent studies have shown that, for lanthanide (III) compounds, the strength of MCD can be enhanced by increasing the magnetic dipole moment of the ground states and the excited states. 93 The Dy(III) ion itself has a large magnetic moment (S = 7/2), and the ferromagnetic interaction between the two Dy(III) ions corresponds to large magnetic dipole moments of the ground state and the excited states; therefore, a strong magneto-optical Faraday effect for d-1 and l-1 appears as expected. This implies that they have potential application prospects in magneto-optical devices. By the way, because gMChD and gMCD are directly proportional,37 it is possible for these chiral Dy2 SMMs to have large gMChD values.45” should be corrected as follows: Replacing Δε(CD) in g(CD) = Δε(CD)/ε with Δε(MCD) gives g(MCD) = Δε(MCD)/ε,92,93 i.e., g(MCD) = {Δε(B+) – Δε(B−)}/(2ε); the g(MCD) values of d-1 and l-1 are calculated to be −5.68 × 10–5 and −5.53 × 10–5 (after being normalized to 1.0 T) at 303 nm, respectively, the |g(MCD)| values are small because their corresponding g(CD) values are small too (2.79 × 10–4 and 2.65 × 10–4, respectively). For chiral molecular materials, the Δε(MCD)/Δε(CD) value means the increment percentage of the CD signal intensity in the presence of a magnetic field relative to the absence of a magnetic field. Therefore, such values at the CD signal peaks (in order to ensure that the measurement error is minimized) may reflect changes in the Faraday effect of chiral compounds.94 The Δε(MCD)/Δε(CD) values at 1.6 T are −32.5% for d-1 and 33.6% for l-1 at 303 nm, suggesting that d-1 and l-1 have a strong magneto-optical Faraday effect. However, the |Δε(MCD)/Δε(CD)| values of d-1 and l-1 at 303 nm are smaller than those of R/S-[Mn10Dy6] (70% at 1.6 T) at 281 nm.94 Figure 8 should be deleted accordingly. Page 12048. Reference 94: Wang, X.; Du, M.-H.; Xu, H.; Long, L.-S.; Kong, X.-J.; Zheng, L.-S. Inorg. Chem. 2021, 60, 5925. These corrections do not affect the overall findings and conclusions of the paper. We apologize for any confusion these errors may cause and appreciate the opportunity to correct them. We appreciate the understanding of the editors and readers. This article has not yet been cited by other publications.
对 "室温下具有强烈磁光法拉第效应的同手性铁磁耦合 Dy2 单分子磁体 "的更正
第 12045 页。由于对公式 gMCD = 2(ε+(B) - ε+(-B))/(ε+(B) + ε+(-B))的理解存在偏差、原论文中的 gMCD 值是按图 7(上)中的 gMCD = 2{Δε(B+) -Δε(B-)}/{Δε(B+) +Δε(B-)} = {Δε(B+) -Δε(B-)}/Δε 计算的,即e.,gMCD = 2Δε(MCD)/Δε(CD),这可能反映了手性化合物的法拉第效应随磁场方向变化的程度。该公式不同于常见的 gMCD = Δε(MCD)/ε。这段 "MCD 的各向异性因子 gMCD = 2(ε+(B) - ε+(-B))/(ε+(B) + ε+(-B)) "92 是针对 l-1 和 d-1 计算的(图 8),它们在 250-350 纳米范围内大致呈镜像对称。值得注意的是,室温下 l-1 和 d-1 的 gmax(MCD) 值分别为 1.27 和-1.72 T-1,其绝对值非常大,远大于 3d-4f 复合物 [Co2Ln[(R)/(S)-L]4]-Cl5-2H2O-MeOH-EtOH (Ln = Gd, Dy) (0. 02 T-1)45 和 4f 复合物 [Co2Ln[(R)/(S)-L]4]-Cl5-2H2O-MeOH-EtOH (Ln = Gd, Dy) (0. 02 T-1)45 的值。93 手性 Dy2 对映体 d-1 和 l-1 的 gmax(MCD) 的绝对值很大,这表明存在很强的磁光法拉第效应。最近的研究表明,对于镧系 (III) 化合物,可以通过增加基态和激发态的磁偶极矩来增强 MCD 的强度。93 Dy(III)离子本身具有较大的磁矩(S = 7/2),而两个 Dy(III)离子之间的铁磁相互作用则对应于基态和激发态的较大磁偶极矩;因此,d-1 和 l-1 出现较强的磁光法拉第效应是意料之中的。这意味着它们在磁光器件中具有潜在的应用前景。顺便提一下,由于 gMChD 和 gMCD 成正比,37 这些手性 Dy2 SMM 有可能具有较大的 gMChD 值:用 Δε(MCD) 代替 g(CD) = Δε(CD)/ε 中的Δε(CD),得到 g(MCD) = Δε(MCD)/ε,92,93 即g(MCD)={Δε(B+) - Δε(B-)}/(2ε); 在 303 纳米波长下,计算得到的 d-1 和 l-1 的 g(MCD) 值分别为 -5.68 × 10-5 和 -5.53 × 10-5(归一化为 1.0 T 后),|g(MCD)| 值很小,因为它们对应的 g(CD) 值也很小(分别为 2.79 × 10-4 和 -2.65 × 10-4)。对于手性分子材料,Δε(MCD)/Δε(CD)值表示有磁场时 CD 信号强度相对于无磁场时的增量百分比。因此,CD 信号峰上的此类值(以确保测量误差最小)可能反映了手性化合物法拉第效应的变化。94 在 1.6 T 下,303 纳米波长处 d-1 的 Δε(MCD)/Δε(CD)值为 -32.5%,l-1 为 33.6%,这表明 d-1 和 l-1 具有很强的磁光法拉第效应。然而,在 303 纳米波长下,d-1 和 l-1 的 |Δε(MCD)/Δε(CD)| 值小于在 281 纳米波长下 R/S-[Mn10Dy6]的 |Δε(MCD)/Δε(CD)| 值(在 1.6 T 时为 70%)。第 12048 页。参考文献 94:Wang, X.; Du, M.-H.; Xu, H.; Long, L.-S.; Kong, X.-J.; Zheng, L.-S.Inorg.Chem.2021, 60, 5925.这些更正并不影响论文的总体发现和结论。我们对这些错误可能造成的任何混淆表示歉意,并感谢有机会更正这些错误。我们感谢编辑和读者的理解。本文尚未被其他出版物引用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信