Universal Construction of Electrical Insulation and High-Thermal-Conductivity Composites Based on the In Situ Exfoliation of Boron Nitride-Graphene Hybrid Filler

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ruiping Hu, Shiyi Wen, Qinjia Chen, Xiaohui Sun, Hailiang Liu, Wensheng Gao, Yongxiao Bai
{"title":"Universal Construction of Electrical Insulation and High-Thermal-Conductivity Composites Based on the In Situ Exfoliation of Boron Nitride-Graphene Hybrid Filler","authors":"Ruiping Hu, Shiyi Wen, Qinjia Chen, Xiaohui Sun, Hailiang Liu, Wensheng Gao, Yongxiao Bai","doi":"10.1021/acsami.4c18250","DOIUrl":null,"url":null,"abstract":"Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler. After being incorporated into a poly(ethylene glycol) (PEG) matrix, the thermal conductivity of composites is significantly improved on the premise of electrical insulation. Furthermore, a three-dimensional (3D) thermally conductive framework using this hybrid filler as the raw material has also been constructed. After incorporating poly(ethylene glycol) (PEG) through a vacuum impregnation method, this ordered structure effectively resolves the leakage issue in phase-change composites during actual working conditions and showcases enhanced thermal conductivity of 2.45 W m<sup>–1</sup> K<sup>–1</sup> at 10 vol %, along with excellent electrical insulation, shape stability, and cyclic stability. The modified Hashin–Shtrikman model and the Foygel nonlinear model prove that compounding graphene with BN reduces the interfacial thermal resistance of polymer composites for both disordered and ordered systems. This indicates that the in situ exfoliation strategy is an effective method to fabricate the nanofiller for reducing the interfacial thermal resistance of composites.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"53 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c18250","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler. After being incorporated into a poly(ethylene glycol) (PEG) matrix, the thermal conductivity of composites is significantly improved on the premise of electrical insulation. Furthermore, a three-dimensional (3D) thermally conductive framework using this hybrid filler as the raw material has also been constructed. After incorporating poly(ethylene glycol) (PEG) through a vacuum impregnation method, this ordered structure effectively resolves the leakage issue in phase-change composites during actual working conditions and showcases enhanced thermal conductivity of 2.45 W m–1 K–1 at 10 vol %, along with excellent electrical insulation, shape stability, and cyclic stability. The modified Hashin–Shtrikman model and the Foygel nonlinear model prove that compounding graphene with BN reduces the interfacial thermal resistance of polymer composites for both disordered and ordered systems. This indicates that the in situ exfoliation strategy is an effective method to fabricate the nanofiller for reducing the interfacial thermal resistance of composites.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信