Donguk Kim, Dayeon Lee, Wonjung Kim, Ho Jung Lee, Changwook Kim, Kwang-Hee Lee, Moonil Jung, Jee-Eun Yang, Younjin Jang, Sungjun Kim, Sangwook Kim, Dae Hwan Kim
{"title":"Modeling of Composition and Channel Length-Dependent Transient Characteristics in Short-Channel IGZO Field-Effect Transistors","authors":"Donguk Kim, Dayeon Lee, Wonjung Kim, Ho Jung Lee, Changwook Kim, Kwang-Hee Lee, Moonil Jung, Jee-Eun Yang, Younjin Jang, Sungjun Kim, Sangwook Kim, Dae Hwan Kim","doi":"10.1021/acsami.4c17007","DOIUrl":null,"url":null,"abstract":"In this study, we analyze the characteristics of fast transient drain current (<i>I</i><sub>D</sub>) in IGZO-based field-effect transistors (FETs) with different composition ratios (device O: ratio of 1:1:1 for In, Ga, Zn, device G: ratio of 0.307:0.39:0.303) for reliable operations. Overshoot currents, which can cause device degradation, are caused by fast transients and are attributed to the trapping of electrons in the energy band. As the lateral electric field (<i>E</i><sub>lat</sub>) of the IGZO channel is increased, the overshoot drain current difference (Δ<i>I</i><sub>OS</sub>) is increased for both devices. It is also found that the increase in Δ<i>I</i><sub>OS</sub> with decreasing <i>L</i> is less pronounced in device G compared with that for device O. While device G yields larger Δ<i>I</i><sub>OS</sub> values than device O in long channels (<i>L</i> = 5, 10 μm), it yields smaller Δ<i>I</i><sub>OS</sub> in short channels (<i>L</i> = 0.5, 1 μm). This phenomenon is explained using three physical parameters (<i>n</i><sub>OS</sub>, <i>E</i><sub>ver</sub>, and <i>N</i><sub>OT</sub>), based on Technology Computer-Aided Design (TCAD) simulation modeling. Device G has stronger immunity against Δ<i>I</i><sub>OS</sub> in a short-channel region; this can be attributed to the lower concentration of oxygen vacancies in device G that suppresses dopant diffusion effects within IGZO layer. These results experimentally demonstrate that the short-channel effects on fast-transient <i>I</i><sub>D</sub> can be improved by controlling the Ga composition ratio of IGZO.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"74 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17007","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we analyze the characteristics of fast transient drain current (ID) in IGZO-based field-effect transistors (FETs) with different composition ratios (device O: ratio of 1:1:1 for In, Ga, Zn, device G: ratio of 0.307:0.39:0.303) for reliable operations. Overshoot currents, which can cause device degradation, are caused by fast transients and are attributed to the trapping of electrons in the energy band. As the lateral electric field (Elat) of the IGZO channel is increased, the overshoot drain current difference (ΔIOS) is increased for both devices. It is also found that the increase in ΔIOS with decreasing L is less pronounced in device G compared with that for device O. While device G yields larger ΔIOS values than device O in long channels (L = 5, 10 μm), it yields smaller ΔIOS in short channels (L = 0.5, 1 μm). This phenomenon is explained using three physical parameters (nOS, Ever, and NOT), based on Technology Computer-Aided Design (TCAD) simulation modeling. Device G has stronger immunity against ΔIOS in a short-channel region; this can be attributed to the lower concentration of oxygen vacancies in device G that suppresses dopant diffusion effects within IGZO layer. These results experimentally demonstrate that the short-channel effects on fast-transient ID can be improved by controlling the Ga composition ratio of IGZO.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.