Ecological and anthropogenic drivers of local extinction and colonization of giant pandas over the past 30 years

IF 4.4 2区 环境科学与生态学 Q1 ECOLOGY
Ecology Pub Date : 2025-01-16 DOI:10.1002/ecy.4507
Junfeng Tang, Ronald R. Swaisgood, Megan A. Owen, Xuzhe Zhao, Wei Wei, Mingsheng Hong, Hong Zhou, Jindong Zhang, Zejun Zhang
{"title":"Ecological and anthropogenic drivers of local extinction and colonization of giant pandas over the past 30 years","authors":"Junfeng Tang, Ronald R. Swaisgood, Megan A. Owen, Xuzhe Zhao, Wei Wei, Mingsheng Hong, Hong Zhou, Jindong Zhang, Zejun Zhang","doi":"10.1002/ecy.4507","DOIUrl":null,"url":null,"abstract":"Understanding the patterns and drivers of species range shifts is essential to disentangle mechanisms driving species' responses to global change. Here, we quantified local extinction and colonization dynamics of giant pandas (<jats:italic>Ailuropoda melanoleuca</jats:italic>) using occurrence data collected by harnessing the labor of &gt;1000 workers and &gt;60,000 worker days for each of the three periods (TP1: 1985–1988, TP2: 1998–2002, and TP3: 2011–2014), and evaluated how these patterns were associated with (1) protected area, (2) local rarity/abundance, and (3) abiotic factors (i.e., climate, land‐use, and topography). We documented a decreased rate (from 0.433 during TP1–TP2 to 0.317 during TP2–TP3) of local extinction and a relatively stable rate (from 0.060 during TP1–TP2 to 0.056 during TP2–TP3) of local colonization through time. Furthermore, the occupancy gains have exceeded losses by a ratio of approximately 1.5 to 1, illustrating an expansion of panda's range at a rate of 1408.3 km<jats:sup>2</jats:sup>/decade. We also found that pandas were more likely to become locally extinct outside of protected areas, when locally rare in surrounding areas, and when certain biotic conditions were not met (e.g., increased forest cover). Local colonization was less likely in areas with high local rarity, challenging biotic conditions and unprotected area status. As the network of panda reserves expanded and the forest matured, the relative importance of other factors such as climate, biotic factors, and land‐use became more influential in determining patterns of local extinction and colonization. Our findings provide insights into the factors governing the expansion of panda's range and illustrate how the relative influence of biotic and abiotic factors can change over time, indicating that effective conservation intervention may be able to mitigate some of the negative impacts of climate change and habitat degradation. This insight extends beyond pandas and highlights the role of conservation interventions can play in building resilience under a changing climate.","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"12 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/ecy.4507","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the patterns and drivers of species range shifts is essential to disentangle mechanisms driving species' responses to global change. Here, we quantified local extinction and colonization dynamics of giant pandas (Ailuropoda melanoleuca) using occurrence data collected by harnessing the labor of >1000 workers and >60,000 worker days for each of the three periods (TP1: 1985–1988, TP2: 1998–2002, and TP3: 2011–2014), and evaluated how these patterns were associated with (1) protected area, (2) local rarity/abundance, and (3) abiotic factors (i.e., climate, land‐use, and topography). We documented a decreased rate (from 0.433 during TP1–TP2 to 0.317 during TP2–TP3) of local extinction and a relatively stable rate (from 0.060 during TP1–TP2 to 0.056 during TP2–TP3) of local colonization through time. Furthermore, the occupancy gains have exceeded losses by a ratio of approximately 1.5 to 1, illustrating an expansion of panda's range at a rate of 1408.3 km2/decade. We also found that pandas were more likely to become locally extinct outside of protected areas, when locally rare in surrounding areas, and when certain biotic conditions were not met (e.g., increased forest cover). Local colonization was less likely in areas with high local rarity, challenging biotic conditions and unprotected area status. As the network of panda reserves expanded and the forest matured, the relative importance of other factors such as climate, biotic factors, and land‐use became more influential in determining patterns of local extinction and colonization. Our findings provide insights into the factors governing the expansion of panda's range and illustrate how the relative influence of biotic and abiotic factors can change over time, indicating that effective conservation intervention may be able to mitigate some of the negative impacts of climate change and habitat degradation. This insight extends beyond pandas and highlights the role of conservation interventions can play in building resilience under a changing climate.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecology
Ecology 环境科学-生态学
CiteScore
8.30
自引率
2.10%
发文量
332
审稿时长
3 months
期刊介绍: Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信