Understanding avascular tumor growth and drug interactions through numerical analysis: A finite element method approach

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Vivek S. Yadav, Nishant Ranwan, Nagaiah Chamakuri
{"title":"Understanding avascular tumor growth and drug interactions through numerical analysis: A finite element method approach","authors":"Vivek S. Yadav, Nishant Ranwan, Nagaiah Chamakuri","doi":"10.1016/j.camwa.2024.12.023","DOIUrl":null,"url":null,"abstract":"This article establishes the existence of a fully discrete weak solution for the tumor growth model, which is described by a coupled non-linear reaction-diffusion system. This model incorporates crucial elements such as cellular proliferation, nutrient diffusion, prostate-specific antigen, and drug effects. We employ the finite element method for spatial discretization and the implicit Euler method for temporal discretization. Firstly, we analyzed the existence and uniqueness of the fully discretized tumor growth model. Additionally, stability bounds for the fully discrete coupled system are derived. Secondly, through multiple numerical simulations utilizing higher-order finite element methods, we analyze tumor growth behavior both with and without drug interaction, yielding a more accurate numerical solution. Furthermore, we compare CPU time efficiency across different time marching methods and explore various preconditioners to optimize computational performance.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"74 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2024.12.023","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article establishes the existence of a fully discrete weak solution for the tumor growth model, which is described by a coupled non-linear reaction-diffusion system. This model incorporates crucial elements such as cellular proliferation, nutrient diffusion, prostate-specific antigen, and drug effects. We employ the finite element method for spatial discretization and the implicit Euler method for temporal discretization. Firstly, we analyzed the existence and uniqueness of the fully discretized tumor growth model. Additionally, stability bounds for the fully discrete coupled system are derived. Secondly, through multiple numerical simulations utilizing higher-order finite element methods, we analyze tumor growth behavior both with and without drug interaction, yielding a more accurate numerical solution. Furthermore, we compare CPU time efficiency across different time marching methods and explore various preconditioners to optimize computational performance.
通过数值分析了解无血管肿瘤生长和药物相互作用:一种有限元方法
本文确定了肿瘤生长模型存在一个完全离散的弱解,该模型由一个耦合非线性反应-扩散系统描述。该模型包含了细胞增殖、营养扩散、前列腺特异性抗原和药物效应等关键要素。我们采用有限元法进行空间离散化,隐式欧拉法进行时间离散化。首先,我们分析了完全离散化肿瘤生长模型的存在性和唯一性。此外,还推导出了完全离散耦合系统的稳定性边界。其次,我们利用高阶有限元方法进行了多次数值模拟,分析了有药物相互作用和无药物相互作用的肿瘤生长行为,得出了更精确的数值解。此外,我们还比较了不同时间行进方法的 CPU 时间效率,并探索了各种预处理方法,以优化计算性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信