Analysis of difference schemes for the Fokker–Planck angular diffusion operator

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Óscar López Pouso, Javier Segura
{"title":"Analysis of difference schemes for the Fokker–Planck angular diffusion operator","authors":"Óscar López Pouso, Javier Segura","doi":"10.1016/j.camwa.2025.01.005","DOIUrl":null,"url":null,"abstract":"This paper is dedicated to the mathematical analysis of difference schemes for discretizing the angular diffusion operator present in the azimuth–independent Fokker–Planck equation. The study establishes sets of sufficient conditions to ensure that the schemes achieve convergence of order 2, and provides insights into the rationale behind certain widely recognized discrete ordinates methods. In the process, interesting properties regarding Gaussian nodes and weights, which until now have remained unnoticed by mathematicians, naturally emerge.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"41 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2025.01.005","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is dedicated to the mathematical analysis of difference schemes for discretizing the angular diffusion operator present in the azimuth–independent Fokker–Planck equation. The study establishes sets of sufficient conditions to ensure that the schemes achieve convergence of order 2, and provides insights into the rationale behind certain widely recognized discrete ordinates methods. In the process, interesting properties regarding Gaussian nodes and weights, which until now have remained unnoticed by mathematicians, naturally emerge.
Fokker-Planck角扩散算子的差分格式分析
本文致力于对独立于方位角的福克-普朗克方程中存在的角扩散算子离散化的差分方案进行数学分析。研究建立了几组充分条件,以确保这些方案达到 2 阶收敛,并深入探讨了某些广受认可的离散序数法背后的原理。在这一过程中,数学家们至今仍未注意到的有关高斯节点和权重的有趣特性自然而然地显现出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信