Ultrafast Broadband Spectroscopy of Widely Spread Excitonic Features in WSe2 Nanosheets

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-01-16 DOI:10.1039/d4nr03874f
Tanmay Goswami, Himanshu Bhatt, Dharmendra Kumar Yadav, Hirendra N. Ghosh
{"title":"Ultrafast Broadband Spectroscopy of Widely Spread Excitonic Features in WSe2 Nanosheets","authors":"Tanmay Goswami, Himanshu Bhatt, Dharmendra Kumar Yadav, Hirendra N. Ghosh","doi":"10.1039/d4nr03874f","DOIUrl":null,"url":null,"abstract":"The performance of an optoelectronic device is largely dependent on the light harvesting properties of the active material as well as the dynamic behaviour of the photoexcited charge carriers upon absorption of light. Recently, atomically thin two-dimensional transition metal dichalcogenides (2D TMDCs) have garnered attention as highly prospective materials for advanced ultrathin solar cells and other optoelectronic applications, owing to their strong interaction with electromagnetic radiation, substantial optical conductivity, and impressive charge carrier mobility. WSe2 is one such extremely promising solar energy material. It has absorption throughout the UV-Vis-NIR region with the existence of four excitonic features, just like MoS2, WS2. However, stability issues and absence of any robust synthetic route limit their practical applications. Herein, we have successfully synthesized atomically thin stable WSe2 nanosheets using very effective colloidal hot injection method and further studied the optical properties of this material using Femtosecond transient absorption spectroscopy. We probed all four excitonic features of WSe2, spread throughout the visible region. The dynamics of the high energy excitons were found to be distinctively slower when compared to their band edge counterparts, adding an additional advantage in optoelectronic applications. We delved further into the factors governing exciton dynamics within WSe2, uncovering strong influence of the electronic band structure. Importantly, our study highlights the importance of all four excitonic features in a 2D TMDC material, which emerge in the system irrespective of the excitation wavelength and influence each other.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"41 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03874f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of an optoelectronic device is largely dependent on the light harvesting properties of the active material as well as the dynamic behaviour of the photoexcited charge carriers upon absorption of light. Recently, atomically thin two-dimensional transition metal dichalcogenides (2D TMDCs) have garnered attention as highly prospective materials for advanced ultrathin solar cells and other optoelectronic applications, owing to their strong interaction with electromagnetic radiation, substantial optical conductivity, and impressive charge carrier mobility. WSe2 is one such extremely promising solar energy material. It has absorption throughout the UV-Vis-NIR region with the existence of four excitonic features, just like MoS2, WS2. However, stability issues and absence of any robust synthetic route limit their practical applications. Herein, we have successfully synthesized atomically thin stable WSe2 nanosheets using very effective colloidal hot injection method and further studied the optical properties of this material using Femtosecond transient absorption spectroscopy. We probed all four excitonic features of WSe2, spread throughout the visible region. The dynamics of the high energy excitons were found to be distinctively slower when compared to their band edge counterparts, adding an additional advantage in optoelectronic applications. We delved further into the factors governing exciton dynamics within WSe2, uncovering strong influence of the electronic band structure. Importantly, our study highlights the importance of all four excitonic features in a 2D TMDC material, which emerge in the system irrespective of the excitation wavelength and influence each other.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信