Constructive error estimates for a full-discretized periodic solution of heat equation by spatial finite-element and time spectral method

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Takuma Kimura, Teruya Minamoto, Mitsuhiro T. Nakao
{"title":"Constructive error estimates for a full-discretized periodic solution of heat equation by spatial finite-element and time spectral method","authors":"Takuma Kimura, Teruya Minamoto, Mitsuhiro T. Nakao","doi":"10.1016/j.camwa.2025.01.008","DOIUrl":null,"url":null,"abstract":"We consider the constructive a priori error estimates for a full discrete approximation of a periodic solution for the heat equation. Our numerical scheme is based on the finite element semidiscretization in space direction combined with the Fourier expansion in time. We derive the optimal order explicit <mml:math altimg=\"si1.svg\"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math> and <mml:math altimg=\"si2.svg\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> error estimates which play an important role in the numerical verification method of exact solutions for nonlinear parabolic equations. Several numerical examples which confirm the theoretical results will be presented.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"2 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2025.01.008","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the constructive a priori error estimates for a full discrete approximation of a periodic solution for the heat equation. Our numerical scheme is based on the finite element semidiscretization in space direction combined with the Fourier expansion in time. We derive the optimal order explicit H1 and L2 error estimates which play an important role in the numerical verification method of exact solutions for nonlinear parabolic equations. Several numerical examples which confirm the theoretical results will be presented.
热方程全离散周期解的空间有限元和时间谱构造误差估计
我们考虑了热方程周期解的全离散近似的建设性先验误差估计。我们的数值方案基于空间方向的有限元半离散化与时间方向的傅里叶展开相结合。我们推导出了最优阶显式 H1 和 L2 误差估计,这在非线性抛物方程精确解的数值验证方法中发挥了重要作用。我们还将介绍几个证实理论结果的数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信