Incomplete remyelination via therapeutically enhanced oligodendrogenesis is sufficient to recover visual cortical function

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Gustavo Della-Flora Nunes, Lindsay A. Osso, Johana A. Haynes, Lauren Conant, Michael A. Thornton, Michael E. Stockton, Katherine A. Brassell, Amanda Morris, Yessenia I. Mancha Corchado, John A. Gaynes, Anthony R. Chavez, Michaelanne B. Woerner, Deidre A. MacKenna, Aryan Alavi, Anne Danks, Alon Poleg-Polsky, Rohan Gandhi, Jeffrey A. Vivian, Daniel J. Denman, Ethan G. Hughes
{"title":"Incomplete remyelination via therapeutically enhanced oligodendrogenesis is sufficient to recover visual cortical function","authors":"Gustavo Della-Flora Nunes, Lindsay A. Osso, Johana A. Haynes, Lauren Conant, Michael A. Thornton, Michael E. Stockton, Katherine A. Brassell, Amanda Morris, Yessenia I. Mancha Corchado, John A. Gaynes, Anthony R. Chavez, Michaelanne B. Woerner, Deidre A. MacKenna, Aryan Alavi, Anne Danks, Alon Poleg-Polsky, Rohan Gandhi, Jeffrey A. Vivian, Daniel J. Denman, Ethan G. Hughes","doi":"10.1038/s41467-025-56092-6","DOIUrl":null,"url":null,"abstract":"<p>Myelin loss induces neural dysfunction and contributes to the pathophysiology of neurodegenerative diseases, injury conditions, and aging. Because remyelination is often incomplete, better understanding endogenous remyelination and developing remyelination therapies that restore neural function are clinical imperatives. Here, we use in vivo two-photon microscopy and electrophysiology to study the dynamics of endogenous and therapeutic-induced cortical remyelination and functional recovery after cuprizone-mediated demyelination in mice. We focus on the visual pathway, which is uniquely positioned to provide insights into structure-function relationships during de/remyelination. We show endogenous remyelination is driven by recent oligodendrocyte loss and is highly efficacious following mild demyelination, but fails to restore the oligodendrocyte population when high rates of oligodendrocyte loss occur quickly. Testing a thyromimetic (LL-341070) compared to clemastine, we find it better enhances oligodendrocyte gain and hastens recovery of neuronal function. The therapeutic benefit of the thyromimetic is temporally restricted, and it acts exclusively following moderate to severe demyelination, eliminating the endogenous remyelination deficit. However, we find regeneration of oligodendrocytes and myelin to healthy levels is not necessary for recovery of visual neuronal function. These findings advance our understanding of remyelination and its impact on functional recovery to inform future therapeutic strategies.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56092-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Myelin loss induces neural dysfunction and contributes to the pathophysiology of neurodegenerative diseases, injury conditions, and aging. Because remyelination is often incomplete, better understanding endogenous remyelination and developing remyelination therapies that restore neural function are clinical imperatives. Here, we use in vivo two-photon microscopy and electrophysiology to study the dynamics of endogenous and therapeutic-induced cortical remyelination and functional recovery after cuprizone-mediated demyelination in mice. We focus on the visual pathway, which is uniquely positioned to provide insights into structure-function relationships during de/remyelination. We show endogenous remyelination is driven by recent oligodendrocyte loss and is highly efficacious following mild demyelination, but fails to restore the oligodendrocyte population when high rates of oligodendrocyte loss occur quickly. Testing a thyromimetic (LL-341070) compared to clemastine, we find it better enhances oligodendrocyte gain and hastens recovery of neuronal function. The therapeutic benefit of the thyromimetic is temporally restricted, and it acts exclusively following moderate to severe demyelination, eliminating the endogenous remyelination deficit. However, we find regeneration of oligodendrocytes and myelin to healthy levels is not necessary for recovery of visual neuronal function. These findings advance our understanding of remyelination and its impact on functional recovery to inform future therapeutic strategies.

Abstract Image

通过治疗增强少突胶质形成的不完全髓鞘再生足以恢复视觉皮质功能
髓鞘脱失会诱发神经功能紊乱,是神经退行性疾病、损伤和衰老的病理生理学因素之一。由于髓鞘再形成通常是不完全的,因此更好地了解内源性髓鞘再形成和开发能恢复神经功能的髓鞘再形成疗法是临床的当务之急。在这里,我们利用体内双光子显微镜和电生理学研究了小鼠在铜绿素介导的脱髓鞘后内源性和治疗诱导的皮质再髓鞘化和功能恢复的动态。我们的研究重点是视觉通路,该通路具有独特的优势,可以帮助我们深入了解脱髓鞘过程中的结构与功能关系。我们的研究表明,内源性再髓鞘化是由最近的少突胶质细胞缺失所驱动的,在轻度脱髓鞘后非常有效,但当大量少突胶质细胞迅速缺失时,内源性再髓鞘化就无法恢复少突胶质细胞的数量。与氯马斯汀相比,我们测试了一种甲状腺仿生药(LL-341070),发现它能更好地增强少突胶质细胞的增殖,加快神经元功能的恢复。仿甲状腺药物的治疗效果受到时间限制,只能在中度至重度脱髓鞘后发挥作用,消除内源性再髓鞘化缺陷。然而,我们发现少突胶质细胞和髓鞘再生至健康水平并非视觉神经元功能恢复的必要条件。这些发现加深了我们对再髓鞘化及其对功能恢复的影响的理解,为未来的治疗策略提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信