Aminopeptidase N‐Activated Self‐immolative Hydrogen Sulfide Donor for Inflammatory Response‐Specific Wound Healing

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fan Rong, Wenxin Bao, Guanyi Li, Yuxuan Ge, Wangyang Zhu, Bin Hao, Yaxue Zhao, Yunsheng Yuan, Yin Wang
{"title":"Aminopeptidase N‐Activated Self‐immolative Hydrogen Sulfide Donor for Inflammatory Response‐Specific Wound Healing","authors":"Fan Rong, Wenxin Bao, Guanyi Li, Yuxuan Ge, Wangyang Zhu, Bin Hao, Yaxue Zhao, Yunsheng Yuan, Yin Wang","doi":"10.1002/anie.202423527","DOIUrl":null,"url":null,"abstract":"Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti‐inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN‐activated self‐immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response‐specific H2S delivery. The compound showed sustained H2S generation upon APN activation in the presence of carbonic anhydrase (CA), and the responsiveness could be well regulated by modulating the amino acid sequence. Due to the inflammatory response‐specific sustained H2S delivery, AlaCOS provided potent anti‐inflammatory capability, which was further validated by RNA sequencing. In vivo experiments on a full‐thickness cutaneous wound murine model also showed the strong promoting effect on wound healing, mainly due to the regulation of the inflammatory response by AlaCOS. By introducing a caged coumarin fluorophore to the molecular architecture, self‐reporting fluorescence could be generated accompanied with APN‐mediated COS/H2S release, which achieved the visualization of H2S delivery in vitro and in vivo. This work not only offers a useful tool for studying the bioactivity of H2S on inflammation, but also provides new insights for developing novel therapies to cope with inflammation‐associated diseases.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"43 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423527","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti‐inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN‐activated self‐immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response‐specific H2S delivery. The compound showed sustained H2S generation upon APN activation in the presence of carbonic anhydrase (CA), and the responsiveness could be well regulated by modulating the amino acid sequence. Due to the inflammatory response‐specific sustained H2S delivery, AlaCOS provided potent anti‐inflammatory capability, which was further validated by RNA sequencing. In vivo experiments on a full‐thickness cutaneous wound murine model also showed the strong promoting effect on wound healing, mainly due to the regulation of the inflammatory response by AlaCOS. By introducing a caged coumarin fluorophore to the molecular architecture, self‐reporting fluorescence could be generated accompanied with APN‐mediated COS/H2S release, which achieved the visualization of H2S delivery in vitro and in vivo. This work not only offers a useful tool for studying the bioactivity of H2S on inflammation, but also provides new insights for developing novel therapies to cope with inflammation‐associated diseases.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信