Richard Rudolf, Andrej Todorovski, Vera Lederer, Nicolas I. Neuman, Hartmut Schubert, Biprajit Sarkar
{"title":"An Anionic Mesoionic Carbene (anMIC) and its Transformation to Metallo MIC‐Boranes: Synthesis and Properties.","authors":"Richard Rudolf, Andrej Todorovski, Vera Lederer, Nicolas I. Neuman, Hartmut Schubert, Biprajit Sarkar","doi":"10.1002/anie.202422702","DOIUrl":null,"url":null,"abstract":"Neutral mesoionic carbenes (MICs) based on a 1,2,3‐triazole core have had a strong impact on various branches of chemistry such as homogeneous catalysis, electrocatalysis, and photochemistry/photophysics. We present here the first general synthesis of anionic mesoionic carbenes (anMICs) based on a 1,2,3‐triazole core and a borate backbone. The free anMIC is stable in solution under an inert atmosphere at low temperatures, and can be stored for several weeks. Analysis of donor properties shows that these anMICs are extremely strong σ‐donors, bypassing the donor properties of strong donors such as MICs, NHCs, anionic NHCs and N‐heterocyclic olefins. The room temperature conversion of the free anMICs leads to three equally interesting compound classes: an amide‐coordinated borane based on a MIC‐borane backbone, a polymeric triazolide and an amide‐coordinated metallo‐MIC‐borane. The metallo‐MIC‐borane is an interesting precursor for the synthesis of further amide‐coordinated MIC‐borane compounds. Quantum chemical calculations have been used to elucidate the mechanism of transformation of the anMICs. Gold(I) complexes of the anMIC ligands are potent catalysts for the hydroamination of alkynes without the need for any additional reagents. We thus introduce three new categories of mesoionic compounds here with potential for different branches of chemistry and beyond.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"74 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422702","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neutral mesoionic carbenes (MICs) based on a 1,2,3‐triazole core have had a strong impact on various branches of chemistry such as homogeneous catalysis, electrocatalysis, and photochemistry/photophysics. We present here the first general synthesis of anionic mesoionic carbenes (anMICs) based on a 1,2,3‐triazole core and a borate backbone. The free anMIC is stable in solution under an inert atmosphere at low temperatures, and can be stored for several weeks. Analysis of donor properties shows that these anMICs are extremely strong σ‐donors, bypassing the donor properties of strong donors such as MICs, NHCs, anionic NHCs and N‐heterocyclic olefins. The room temperature conversion of the free anMICs leads to three equally interesting compound classes: an amide‐coordinated borane based on a MIC‐borane backbone, a polymeric triazolide and an amide‐coordinated metallo‐MIC‐borane. The metallo‐MIC‐borane is an interesting precursor for the synthesis of further amide‐coordinated MIC‐borane compounds. Quantum chemical calculations have been used to elucidate the mechanism of transformation of the anMICs. Gold(I) complexes of the anMIC ligands are potent catalysts for the hydroamination of alkynes without the need for any additional reagents. We thus introduce three new categories of mesoionic compounds here with potential for different branches of chemistry and beyond.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.