Engineering Carbon Nanotube Saturable Absorber for Boosting Repetition Rate in a Harmonic Mode-Locked GHz Soliton Fiber Laser

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qianqian Huang, Lilong Dai, Bo Zhang, Kai Wang, Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou
{"title":"Engineering Carbon Nanotube Saturable Absorber for Boosting Repetition Rate in a Harmonic Mode-Locked GHz Soliton Fiber Laser","authors":"Qianqian Huang, Lilong Dai, Bo Zhang, Kai Wang, Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou","doi":"10.1021/acsphotonics.4c02145","DOIUrl":null,"url":null,"abstract":"GHz femtosecond fiber lasers are being developed to meet the demands of state-of-the-art applications such as high-speed optical communication and ablation-cooled material removal. Harmonic mode locking (HML) opens a portal to generate GHz ultrashort pulses. However, the impact of a saturable absorber (SA) in controlling the laser repetition rate has long been overlooked. Herein, we successfully boost the repetition rate of the HML laser to ∼10 GHz by engineering the nonlinear optical absorption of film-type single-walled carbon nanotube (SWCNT) SA. Our study first reports a new inhibition for HML repetition rate enhancement, the transition from HML to noise-like pulse (NLP) due to reverse saturable absorption (RSA) of SA, and reveals that the optimum SA for HML repetition rate enhancement should be characterized by low effective modulation depth without RSA. Employing SWCNT-SA with ∼0.4% effective modulation depth, we demonstrate the achievement of 9.25 GHz pulses at the 914th harmonic order in a soliton fiber laser. This represents, to the best of our knowledge, the highest HML repetition rate reported for a physical SA mode-locked fiber laser. Our findings may provide general guidelines for the configuration of practical HML fiber laser while opening the possibility for versatile GHz ultrafast laser sources.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"41 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02145","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

GHz femtosecond fiber lasers are being developed to meet the demands of state-of-the-art applications such as high-speed optical communication and ablation-cooled material removal. Harmonic mode locking (HML) opens a portal to generate GHz ultrashort pulses. However, the impact of a saturable absorber (SA) in controlling the laser repetition rate has long been overlooked. Herein, we successfully boost the repetition rate of the HML laser to ∼10 GHz by engineering the nonlinear optical absorption of film-type single-walled carbon nanotube (SWCNT) SA. Our study first reports a new inhibition for HML repetition rate enhancement, the transition from HML to noise-like pulse (NLP) due to reverse saturable absorption (RSA) of SA, and reveals that the optimum SA for HML repetition rate enhancement should be characterized by low effective modulation depth without RSA. Employing SWCNT-SA with ∼0.4% effective modulation depth, we demonstrate the achievement of 9.25 GHz pulses at the 914th harmonic order in a soliton fiber laser. This represents, to the best of our knowledge, the highest HML repetition rate reported for a physical SA mode-locked fiber laser. Our findings may provide general guidelines for the configuration of practical HML fiber laser while opening the possibility for versatile GHz ultrafast laser sources.

Abstract Image

提高谐波锁模GHz孤子光纤激光器重复频率的工程碳纳米管可饱和吸收器
为了满足高速光通信和烧蚀冷却材料去除等最先进应用的需求,正在开发GHz飞秒光纤激光器。谐波锁模(HML)打开了一个产生GHz超短脉冲的入口。然而,饱和吸收体在控制激光重复率方面的作用一直被忽视。本文中,我们通过设计薄膜型单壁碳纳米管(SWCNT) SA的非线性光学吸收,成功地将HML激光器的重复频率提高到~ 10 GHz。我们的研究首次报道了一种新的抑制HML重复率增强的方法,即由于SA的反向饱和吸收(RSA)从HML过渡到类噪声脉冲(NLP),并揭示了HML重复率增强的最佳SA应该具有低有效调制深度的特征,没有RSA。采用有效调制深度为~ 0.4%的swcnts - sa,在孤子光纤激光器中实现了914次谐波的9.25 GHz脉冲。据我们所知,这是物理SA锁模光纤激光器报道的最高HML重复率。我们的研究结果可能为实际HML光纤激光器的配置提供一般指导,同时为通用GHz超快激光源打开了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信